SC21 STUDENT CLUSTER COMPETITION

QUANTUM ESPRESSO INTRO STUDENT CLUSTER COMPETITION

YE LUOArgonne National Laboratory

COLLEEN BERTONIArgonne National Laboratory

MANIFESTO

- QUANTUM ESPRESSO is an integrated suite of Open-Source computer codes for electronic-structure calculations and materials modeling at the nanoscale. It is based on density-functional theory, plane waves, and pseudopotentials.
- https://www.quantum-espresso.org/project/manifesto

QUANTUM MECHANICS

For microscopic material properties

Time-dependent Schrödinger equation (general)

$$i\hbarrac{d}{dt}|\Psi(t)
angle=\hat{H}|\Psi(t)
angle$$

Time-independent Schrödinger equation (single nonrelativistic particle)

$$\left[rac{-\hbar^2}{2m}
abla^2 + V({f r})
ight]\Psi({f r}) = E\Psi({f r})$$

Time-independent Schrödinger equation (general)

$$\hat{
m H}\ket{\Psi}=E\ket{\Psi}$$

We solve this simplified case which is still extremely difficult

DENSITY FUNCTIONAL THEORY

Hohenberg–Kohn theorems

- Theorem 1. The external potential (and hence the total energy), is a unique functional of the electron density.
- Theorem 2. The functional that delivers the ground-state energy of the system gives the lowest energy if and only if the input density is the true ground-state density.

Kohn-Sham equation

- The ground-state density of the interacting system of interest can be calculated as ground-state density of an auxiliary non-interacting system in an effective potential
- Solvable with approximations, LDA

BOOMING PUBLICATIONS

Highly correlated with the availability of HPC clusters

Numbers of papers when DFT is searched as a topic

Perspective on density functional theory K. Burke, J. Chem. Phys. **136**, 150901 (2012)

MANY DFT CODES AROUND THE WORLD

- ·Local orbital basis codes
 - QUEST: SeqQuest gaussian basis pseudopotential code
 - <u>SIESTA</u> numerical atom-centered basis pseudopotential code
 - CRYSTAL CSE gaussian basis all-electron code
 - AIMPRO
 - <u>FHI-AIMS</u> (commerical license) full potential, allelectron, numerical orbitals
 - FPLO
 - OpenMX GPL numerical atom-centered basis PP code (Ozaki group)
- •All-electron (augmented methods) codes
 - •ELK GPL FP-LAPW

(one branch from the old EXCITING code)

•EXCITING - FP-LAPW, focus on excited state properties (TDDFT, MBPT)

[license not apparent on website, probably open source] (another branch from the old EXCITING code)

- •FLEUR "freely available" FLAPW code
- •RSPt "Open Source" FP-LMTO
- •WIEN2k modest fee full potential LAPW

- •Plane wave and related (real space, wavelet, etc.) methods
 - VASP
 - •CASTEP
 - •CPMD
 - •ABINIT GPL
 - •BigDFT GPL wavelets
 - •Quantum-Espresso (formerly PWscf) GPL
 - •PEtot GPL
 - **DACAPO GPL**
 - Socorro GPL
 - •JDFTx formerly known as DFT++ GPL
 - Paratec
 - PARSEC GPL real space, pseudopotential
 - •CP2K GPL (mixed basis DFT)
 - •GPAW GPL real-space multigrid PAW code
 - SPHINX
 - •QBOX GPL plane wave pseudopotential, large parallel

https://dft.sandia.gov/codes_list.html

PLANEWAVE IMPLEMENTATION

Structure of a self-consistent type code

- Dual space formalism
- V_KS in real-space
- H_KS in reciprocal space
- fast Fourier transform (FFT)
- Iterative solver with subspace diagonalization

Electronic Structure: from BlackBoard to Source Code Advanced course given by Stefano de Gironcoli https://cm.sissa.it/phdsection/descriptioncourse.php?ID=38

QE PARALLELIZATION

MPI+OpenMP+GPU

- Course level with MPI
- Fine level with OpenMP threading or GPU
- Some parallelization levels are limited to specific features.

Summary of parallelization levels in quantum ESPRESSO

group	distributed quantities	communications	performances
image	NEB images, phonon modes	very low	linear CPU scaling fair to good load balancing; does not distribute RAM
pool	k-points	low	almost linear CPU scaling, fair to good load balancing; does not distribute RAM
bands	KS orbitals	high	improves scaling
plane- wave	PW, G-vector coecients, R-space FFT arrays	high	good CPU scaling, good load balancing, distributes most RAM
task	FFT on electron states	high	improves load balancing
linear- algebra	subspace hamiltonians and constraints matrices	very high	improves scaling, distributes more RAM
OpenMP	FFT, libraries	intra-node	extends scaling on multicore machines

ACCESS

- Git repo https://gitlab.com/QEF/q-e
 - Current develop 98901cc0d67dfed37319187ab6ed10387c1b8f43
 - 6.8 release in July
- Forum for users
 - users@lists.quantum-espresso.org
- Bugs and issues
 - Gitlab issues

COMPILER AND LIBRARIES

- Harware support
 - X86_64, ARM, Power CPUs
 - NVIDIA GPU
- Compilers
 - GNU, LLVM
 - Vendor compilers
 - Only NVHPC supports GPU

- Optimized vendor library
 - 1D 2D & 3D batched FFT
 - BLAS/LAPACK
- Parallel eigensolvers
 - ScaLAPACK
 - ELPA
- GPU accelerated counter part

BUILD RECIPES

Need C and Fortran compilers

cmake -DCMAKE_C_COMPILER=mpicc -DCMAKE_Fortran_COMPILER=mpif90 ...

- Additional feature options
 - QE ENABLE OPENMP
 - QE_ENABLE_CUDA, QE_ENABLE_MPI_GPU_AWARE
 - QE ENABLE SCALAPACK
 - QE ENABLE ELPA
- https://gitlab.com/QEF/q-e/-/wikis/Developers/CMake-build-system

TESTS

- Run QE tests before benchmarking
 - ctest -L "systems--pw" --output-on-failure
- https://gitlab.com/QEF/q-e/-/wikis/Developers/Test-suite-and-test-farm#ctest-experimental

BENCHMARKS

Practice datasets

- https://github.com/QEF/benchmarks
- AUSURF112
 - Relatively small single socket CPU/GPU
 - Used in many publications
- PSIWAT
 - Medium size, good for a few nodes

INPUT FILE

Fortran namelist style

```
&CONTROL
 title = ' DEISA pw benchmark ',
 calculation = 'scf',
 restart mode = 'from scratch', !
'restart',
 tprnfor = .TRUE.,
 etot conv thr = 1.d-8,
 prefix = 'ausurf'
 pseudo dir = './'
 outdir = './'
 disk io = 'none'
 verbosity = 'high'
```

disk_io reduces disk read/write verbosity high prints info about memory usage details

Documentation https://www.quantumespresso.org/Doc/INPUT_PW.ht ml

Parameters changing accuracy may not be modified. For example, etot conv thr

RUN COMMAND LINE

- Parallel levels are controlled via command line options mpirun -np 32 pw.x -nk 4 -ndiag 4 -inp simulation.in
- Manage core/GPU affinity to MPI/OpenMP carefully.
- https://www.quantum-espresso.org/Doc/user_guide.pdf

OUTPUT FILE

Program PWSCF v.6.3MaX starts on 12Jul2018 at 21:25:59

This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite

"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);

"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);

URL http://www.quantum-espresso.org",

in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote

MPI OpenMP info

Parallel version (MPI & OpenMP), running on 64 processor cores

Number of MPI processes: 16 Threads/MPI process: 4

MPI parallelization levels info

MPI processes distributed on 1 nodes

R & G space division: proc/nbgrp/npool/nimage = 16

Reading input from ausurf.in

GPU activation info

GPU acceleration is ACTIVE.

GPU-aware MPI enabled

RESULT CORRECTNESS CHECK

Total energy

Always check energy printout \$ grep "total energy" "total energy" at every self-consistent total energy -25.49913426 Ry cycle -25.49944087 Ry total energy total energy -25.49944452 Ry • "! total energy" if converged to total energy -25.49944107 Rv required threshold total energy -25.49944297 Rv Stop early trick total energy -25.49944296 Ry **&ELECTRONS** total energy -25.49944296 Ry electron_maxstep = 3 total energy -25.49944296 Ry

TIMING INFO

- Built-in timing info printed at the end of run
- Use wall clock time for comparison

```
init_run : 81.62s CPU 26.85s WALL ( 1 calls) electrons : 1250.73s CPU 354.11s WALL ( 1 calls)
```

Called by init_run:

wfcinit : 68.96s CPU 20.45s WALL (1 calls) potinit : 2.40s CPU 1.04s WALL (1 calls) hinit0 : 4.51s CPU 1.72s WALL (1 calls)

PWSCF : 22m12.48s CPU 6m22.06s WALL

PERFORMANCE TIPS

- Use optimized libraries
- Map appropriate parallel levels to the simulation needs.
- Performance tips at the user-guide as well

RECIPE

- List of actions
 - Clone repo
 - Build pw.x
 - Run tests
 - Download and run benchmark
- https://github.com/ye-luo/q-e-demo.git

