
ramBLe: A Parallel Framework for
Constraint-Based Bayesian Network
Learning via Markov Blanket Discovery
Ankit Srivastava

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Machine Learning (ML) models are being used for decision-making in a diverse set of
fields – spam detection, recommender systems, etc.
• “Black box” models are typically used for the purpose

Motivation

Image Source: XKCD – Machine Learning
https://xkcd.com/1838/

https://xkcd.com/1838/

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Machine Learning (ML) models are being used for decision-making in a diverse set of
fields – spam detection, recommender systems, etc.
• “Black box” models are typically used for the purpose – NOT interpretable

Motivation

Image Source: Interpretable Machine Learning — Fairness, Accountability, and Transparency in ML systems
https://medium.com/@ODSC/interpretable-machine-learning-fairness-accountability-and-transparency-in-ml-systems-3ab45d961fbc

https://medium.com/@ODSC/interpretable-machine-learning-fairness-accountability-and-transparency-in-ml-systems-3ab45d961fbc

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Machine Learning (ML) models are being used for decision-making in a diverse set of
fields – spam detection, recommender systems, etc.
• “Black box” models are typically used for the purpose – NOT interpretable

• Increasingly, ML is being used in high human-impact areas,
e.g., criminal justice, healthcare, law enforcement, etc.
• Apprehensions regarding use of black box models in these areas is growing

Motivation

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Machine Learning (ML) models are being used for decision-making in a diverse set of
fields – spam detection, recommender systems, etc.
• “Black box” models are typically used for the purpose – NOT interpretable

• Increasingly, ML is being used in high human-impact areas,
e.g., criminal justice, healthcare, law enforcement, etc.
• Interpretable ML models are the need of the hour

Motivation

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Bayesian networks (BNs) enable probabilistic reasoning about links between the
variables of interest – interpretable decisions
• Used for medical diagnosis, legal reasoning, epidemiology, etc.

• Learning structure of BNs is compute-intensive – needs parallelism

• Existing libraries for learning BNs support limited or no parallelism
• e.g., bnlearn, pcalg, Tetrad

• Parallelization strategies have been proposed for various BN learning algorithms –
difficult to integrate disparate strategies
• Parallel library with support for multiple algorithms is desirable

Motivation

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• BN structure represents dependence graph of a set of variables
• Case study – Stock prices of companies related to cloud computing

• Parents and Children (PC) set of a variable consists of the variables
that are dependent on it, given any conditioning set
• e.g., 𝑃𝐶(GOOGL) = {NVDA, SPOT, NFLX}

• Markov blanket (MB) of a variable consists of the variables
that render the variable independent of other variables
• Assuming faithfulness
𝑀𝐵(𝑋) = 𝑃𝐶(𝑋) ∪ 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑌 ∀𝑌 ∈ 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑋)
⇒ 𝑀𝐵 GOOGL = {NVDA, SPOT, NFLX, AMZN}

Background – Bayesian Networks

NVDA

MSFT

GOOGL AMZN

NFLXSPOT

GOOGL

NVDA

SPOT NFLX

AMZN

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Constraint-based algorithms learn BN by conducting repeated CI tests using given data
set of 𝑚 observations for the 𝑛 variables
• Statistical tests, e.g., G2 test for discrete data

• Blanket learning algorithms are constraint-based algorithms that first learn MB sets of all
the variables separately to get the BN structure
• Grow-Shrink (GS) (Margaritis and Thrun, 2000)
• Incremental Association MB (IAMB) (Tsamardinos et al., 2003)
• Interleaved IAMB (Inter-IAMB) (Tsamardinos et al., 2003)

Blanket Learning Algorithms

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Use variations of the Grow-Shrink scheme for learning MB sets
• Grow phase: Add variables to candidate MB sets
• Shrink phase: Remove false positive variables from candidate MB sets

• Differ in the specifics of how the scheme is iterated
• Choosing variables to be added in Grow phase

• IAMB and Inter-IAMB pick the “most dependent” variable given the current candidate MB set
• GS picks the first dependent variable

• Order of Grow and Shrink phases
• GS and IAMB execute multiple iterations of Grow phase followed by one Shrink phase
• Inter-IAMB interleaves the execution of Grow and Shrink phases in every iteration

• Perform symmetry correction for MB sets (𝑋 ∈ 𝑀𝐵 𝑇 ó𝑇 ∈ 𝑀𝐵(𝑋))
• Learn PC from MB sets (PC ⊆ MB)

Blanket Learning Algorithms

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Nikolova et al. (2011) parallelized two similar constraint-based algorithms:
MMPC (Tsamardinos et al., 2006) and GetPC (Peña et al., 2007)
• Scales well up to 512 cores for learning neighborhoods of 1,000 variables
• Scaling tapers off as the number of cores or variables are increased

• bnlearn contains implementations of the three algorithms
• Scutari et al. (2017) added support for parallelizing the implementations using a master-

worker paradigm for small-scale parallelism

• Both these approaches distribute learning of variable neighborhoods

Related Works

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Distribute learning across processors – how?
• Previous approaches have distributed learning neighborhoods of variables

Parallel Framework – Key Design Ideas

Candidates = 𝑂(𝑛)

Variables
= 𝑂 !

"

Variables
= 𝑂 !

"

𝑝#

𝑝$

Work per processor
∝ 𝑂 !!

"

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Distribute learning across processors – how?
• Previous approaches have distributed learning neighborhoods of variables

Parallel Framework – Key Design Ideas

Selected
Candidate Variables

𝑝#

𝑝$

Iteration 1

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Distribute learning across processors – how?
• Previous approaches have distributed learning neighborhoods of variables

Parallel Framework – Key Design Ideas

𝑝$

𝑝#

Iteration 1 Iteration 2

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Distribute learning across processors – how?
• Previous approaches have distributed learning neighborhoods of variables

Parallel Framework – Key Design Ideas

𝑝#

𝑝$

Iteration 1 Iteration 2 Iteration 3

Load Imbalance
Unclear how to fix

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Distribute learning across processors – how?
• Previous approaches have distributed learning neighborhoods of variables

Parallel Framework – Key Design Ideas

𝑝#

𝑝$

Iteration 1 Iteration 2 Iteration 4

Idle Processor
Coarse-grained work distribution

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Distribute learning across processors – how?
• Previous approaches have distributed learning neighborhoods of variables

• Observation: Variables have different neighborhood sizes – distributing variables to
processors is suboptimal

• Idea: Distribute all the target and candidate variable pairs in parallel

Parallel Framework – Key Design Ideas

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Idea: Distribute all the target and candidate variable pairs in parallel

Parallel Framework – Key Design Ideas

𝑝#

𝑝$

Work per processor ∝ Pairs per processor
= 𝑂 !!

"

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Idea: Distribute all the target and candidate variable pairs in parallel

Parallel Framework – Key Design Ideas

𝑝#

𝑝$

Iteration 1
Selected

Candidate Pairs

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Idea: Distribute all the target and candidate variable pairs in parallel

Parallel Framework – Key Design Ideas

𝑝#

𝑝$

Iteration 2

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Idea: Distribute all the target and candidate variable pairs in parallel

Parallel Framework – Key Design Ideas

𝑝#

𝑝$

Iteration 3

Load Imbalance
Can be alleviated

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Idea: Distribute all the target and candidate variable pairs in parallel

Parallel Framework – Key Design Ideas

𝑝#

𝑝$

Iteration 4

Idle Processor
Can be avoided

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• 𝑐⎯𝑠𝑐𝑜𝑟𝑒𝑠 is a list of tuples < 𝑋, 𝑌, 𝜃!" > s.t. 𝑋 ∈ 𝒳, 𝑌 ∈ 𝒳 ∖ {𝑋}
• 𝜃!" is the score of 𝑌 for addition to the MB set of 𝑋
• Tuples with the same 𝑋 are contiguously arranged in the list

• Work distribution in parallel by distributing the tuples
• 𝑐⎯𝑠𝑐𝑜𝑟𝑒𝑠 is block-distributed across processors – 𝑐⎯𝑠𝑐𝑜𝑟𝑒𝑠# on processor 𝑗

Parallel Framework – Primary Data Structure

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Parallel Grow phase on processor 𝑗
• Update 𝜃!" for all the tuples ∈ 𝑐⎯𝑠𝑐𝑜𝑟𝑒𝑠#

• Computation of 𝜃%& is dependent on the algorithm
• Add 𝑌 to the MB of 𝑋 corresponding to the best 𝜃!"

• Can be identified using two segmented parallel prefix operations for all the variables

• Parallel Shrink phase on processor 𝑗
• Candidate MBs are available for local target variables – no communication

• Parallel Symmetry Correction using algorithm by Nikolova et al. (2011)
• Parallel PC from MB for local target variables on processor 𝑗

Parallel Framework – Components

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

Parallel Skeleton – Blanket Learning

INTERIAMB():

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Implemented using C++ and MPI (conforms to C++14 and MPI 3.1)
Available at https://github.com/asrivast28/ramBLe

• Optimizations for fast execution in practice
• Algorithm specific optimizations – GS work reduction
• Experimented with different statistic computation strategies for CI tests
• Dynamic load balancing scheme

Implementation

https://github.com/asrivast28/ramBLe

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Experimental setup
• 64 nodes of the Hive cluster, 16 MPI processes per node – 1024 processes
• RHEL 7.6, gcc v9.2.0, MVAPICH2 v2.3.3

• Used real gene-expression data sets to learn gene networks

• Used three simulated data sets (𝑆1, 𝑆2, and 𝑆3) to show scalability
• 𝑛 = 30,000; 𝑚 = 10,000; edge addition probabilities: 5𝑒 − 5, 1𝑒 − 4, and 5𝑒 − 4

Experiments and Results

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Sequential comparison with prior state-of-the-art – bnlearn
• Popular library for learning BNs; C implementation interfaces with R

Experiments and Results

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Sequential comparison with prior state-of-the-art – bnlearn
• Popular library for learning BNs; C implementation interfaces with R

• BNs learned by our implementations are similar to those by bnlearn
• Recalled 99.84% edges with a precision of 99.92% for 𝐷1 data set
• Changes in the ordering of the variables caused the differences

• Parallelism in bnlearn yields diminishing returns beyond a single node
• e.g., IAMB shows a self-speedup of 3.4X on 16 cores for 𝐷3 data set

while the self-speedup using 64 cores on four nodes is 3.9X

Experiments and Results

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Parallel performance of our framework – notions of scalability

• Strong Scaling
• Fixed total work; how does the run-time scale with increasing parallelism?

(𝑛 is kept constant as 𝑝 increases)

• Weak Scaling
• Fixed work per processor; how does the run-time scale with increasing parallelism?

(𝑛 is increased as 𝑝 increases)

• Speedup and efficiency are measured
• Perfect parallel algorithm shows linear speedup and 100% efficiency

Experiments and Results

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Strong scaling of our framework – IAMB

Experiments and Results

Number of cores (𝑝) Number of cores (𝑝)

St
ro
ng
Sc
al
in
g
Sp
ee
du
p

St
ro
ng
Sc
al
in
g
Ef
<ic
ie
nc
y
(%
)

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Strong scaling of our framework – Inter-IAMB

Experiments and Results

Number of cores (𝑝)Number of cores (𝑝)

St
ro
ng
Sc
al
in
g
Sp
ee
du
p

St
ro
ng
Sc
al
in
g
Ef
<ic
ie
nc
y
(%
)

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Strong scaling of our framework – GS

Experiments and Results

Number of cores (𝑝)Number of cores (𝑝)

St
ro
ng
Sc
al
in
g
Sp
ee
du
p

St
ro
ng
Sc
al
in
g
Ef
<ic
ie
nc
y
(%
)

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Investigating the scaling performance of GS
• High communication overhead due to lower total work?

Experiments and Results

Number of cores (𝑝)

Fraction of total run − time
spent in communication (%)

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Scaling performance of GS – real data versus simulated data

Experiments and Results

Number of cores (𝑝)Number of cores (𝑝)

St
ro
ng
Sc
al
in
g
Ef
<ic
ie
nc
y
(%
)

St
ro
ng
Sc
al
in
g
Ef
<ic
ie
nc
y
(%
)

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Weak scaling of our framework

• Fixed work per processor – how do we vary 𝑛 with increasing 𝑝?
• Choose all the variables when using the largest 𝑝, a subset of variables for smaller 𝑝

• Estimated work per processor = @#' $

• Chosen number of variables scale as 𝑝, i.e., 𝑛$ = 𝑛 ⁄$ $!"#

• We chose the first 𝑛$ variables in the data sets for our experiments

Experiments and Results

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Weak scaling of our framework – D2

Experiments and Results

Number of cores (𝑝)

W
ea
k
Sc
al
in
g
Ef
<ic
ie
nc
y
(%
)

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Our parallel algorithms learn genome-scale BNs in < 1 minute on 1024 cores, down from
more than 13 hours sequentially
• Maximum speedup of 844.8X and 82.5% scaling efficiency on 1024 cores
• IAMB and Inter-IAMB show a sustained efficiency of > 75% for 𝐷2 and 𝐷3

• Learning BNs from simulated data sets takes < 2 minutes on 1024 cores, as compared to
more than a day sequentially
• Maximum speedup of 845X and 82.5% scaling efficiency on 1024 cores
• GS shows an improved efficiency of > 60% for all the data sets

Experiments and Results

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

Thanks! Questions?

