e eC21

St.Louis, |science
MO | & beyond.

Georgia @
Tech|/

St. Louis, MO

Motivation

* Machine Learning (ML) models are being used for decision-making in a diverse set of
fields — spam detection, recommender systems, etc.

* “Black box” models are typically used for the purpose

THIS 15 YOUR MACHINE LEARNING SYSTETM?

YOP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LJRONG?)

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

Georgia &
Tech

=

Image Source: XKCD — Machine Learning
https://xkcd.com/1838/

https://xkcd.com/1838/

St. Louis, MO

Motivation

* Machine Learning (ML) models are being used for decision-making in a diverse set of
fields — spam detection, recommender systems, etc.

* “Black box” models are typically used for the purpose — NOT interpretable

Why did you predict
42 for this data point?

__________ 3
}
\

ﬁﬁ *awkward silence®
Wl

Georgia
Image Source: Interpretable Machine Learning — Fairness, Accountability, and Transparency in ML systems Tech
https://medium.com/@ODSC/interpretable-machine-learning-fairness-accountability-and-transparency-in-ml-systems-3ab45d96 1fbc

=

https://medium.com/@ODSC/interpretable-machine-learning-fairness-accountability-and-transparency-in-ml-systems-3ab45d961fbc

\F &21 St. Louis, MO

Motivation

 Machine Learning (ML) models are being used for decision-making in a diverse set of
fields — spam detection, recommender systems, etc.

* “Black box” models are typically used for the purpose — NOT interpretable

* Increasingly, ML is being used in high human-impact areas,
e.g., criminal justice, healthcare, law enforcement, etc.

* Apprehensions regarding use of black box models in these areas is growing

@]}cxpwﬂork@'imcs = MIEEE BACKCHANNEL BUSINESS CULTURE GEAR MORE v ©CBSN ORIGINALS

A TOM SIMONITE N 4.2819 B82:88 PM By ELAISHA STOKES CBS NEWS November 19)0 AM
OP-ED CONTRIBUTOR M SIMON BUSINESS 1B.24.281 :

When a Computer Program Keeps A Health Care Algorithm OfferedLess ~ Wrongful arrest exposes

You'in Jail Care to Black Patients racial bias in facial
A study shows the risks of making decisions using data that reflects recognltlon teChHOIogy
By Rebecca Wexler inequities in American society.

Georgia
Tech

=

\F &21 St. Louis, MO

Motivation

 Machine Learning (ML) models are being used for decision-making in a diverse set of
fields — spam detection, recommender systems, etc.
* “Black box” models are typically used for the purpose — NOT interpretable

* Increasingly, ML is being used in high human-impact areas,

e.g., criminal justice, healthcare, law enforcement, etc. T
* Interpretable ML models are the need of the hour
- NATIONAL LAW REVIEW
REUTERS FTC Issues New Guidance, Warning That Bias in
R e Artificial Intelligence Could Create Potential Liability
for Enforcement Actions

Saturday, April 24, 2021

U.S. banking regulators seek input on how firms
FORTUNE

rely on artificial intelligence
TECH « ARTIFICIAL INTELLIGENCE

Europe proposes strict A.L regulation likely to
have an impact around the world i
Georgia &

BY JEREMY KAHN Tech

April 21, 2021 7:48 AM EDT LV

\F &21 St. Louis, MO

Motivation

Bayesian networks (BNs) enable probabilistic reasoning about links between the
variables of interest — interpretable decisions

e Used for medical diagnosis, legal reasoning, epidemiology, etc.

Learning structure of BNs is compute-intensive — needs parallelism

Existing libraries for learning BNs support limited or no parallelism
e e.g., bnlearn, pcalg, Tetrad

Parallelization strategies have been proposed for various BN learning algorithms —
difficult to integrate disparate strategies

* Parallel library with support for multiple algorithms is desirable

Tech

=

Georgia &

\{" &21 St. Louis, MO

Background — Bayesian Networks

* BN structure represents dependence graph of a set of variables
e Case study — Stock prices of companies related to cloud computing

* Parents and Children (PC) set of a variable consists of the variables
that are dependent on it, given any conditioning set

* e.g., PC(GOOGL) = {NVDA, SPOT, NFLX}

e Markov blanket (MB) of a variable consists of the variables
that render the variable independent of other variables

e Assuming faithfulness
MB(X) = PC(X) U (Parents(Y) VY € Children(X))
= MB(GOOGL) = {NVDA, SPOT, NFLX, AMZN}

Georgia &
Tech|/

\F &21 St. Louis, MO

Blanket Learning Algorithms

e Constraint-based algorithms learn BN by conducting repeated Cl tests using given data
set of m observations for the n variables

* Statistical tests, e.g., G? test for discrete data

* Blanket learning algorithms are constraint-based algorithms that first learn MB sets of all
the variables separately to get the BN structure
e Grow-Shrink (GS) (Margaritis and Thrun, 2000)
* Incremental Association MB (IAMB) (Tsamardinos et al., 2003)
* Interleaved IAMB (Inter-IAMB) (Tsamardinos et al., 2003)

Georgia &
Tech

=

\F &21 St. Louis, MO

Blanket Learning Algorithms

Use variations of the Grow-Shrink scheme for learning MB sets
* Grow phase: Add variables to candidate MB sets
e Shrink phase: Remove false positive variables from candidate MB sets

Differ in the specifics of how the scheme is iterated

e Choosing variables to be added in Grow phase
* JAMB and Inter-IAMB pick the “most dependent” variable given the current candidate MB set
e GS picks the first dependent variable
* Order of Grow and Shrink phases
* GS and IAMB execute multiple iterations of Grow phase followed by one Shrink phase
* Inter-IAMB interleaves the execution of Grow and Shrink phases in every iteration

Perform symmetry correction for MB sets (X € MB(T)<~T € MB(X))
Learn PC from MB sets (PC € MB)

Tech

=

Georgia &

\F &21 St. Louis, MO

Related Works

e Nikolova et al. (2011) parallelized two similar constraint-based algorithms:
MMPC (Tsamardinos et al., 2006) and GetPC (Pena et al., 2007)

e Scales well up to 512 cores for learning neighborhoods of 1,000 variables
* Scaling tapers off as the number of cores or variables are increased

* bnlearn contains implementations of the three algorithms

» Scutari et al. (2017) added support for parallelizing the implementations using a master-
worker paradigm for small-scale parallelism

* Both these approaches distribute learning of variable neighborhoods

Tech

=

Georgia &

\i’ &21 St. Louis, MO

Parallel Framework — Key Design Ideas

e Distribute learning across processors — how?
* Previous approaches have distributed learning neighborhoods of variables

- ./\
Variables g ———
P1 = 0(2) . . A A A A) \
. I ————
— Y . </ Work per processor
2
- ™\ «0 (%)
~ A . - ~ ~ ~ ~ N p
Variables
o) S
— v K A A /
. Georgia
Candidates = 0(n) Tech

=

\i’ &21 St. Louis, MO

Parallel Framework — Key Design Ideas

e Distribute learning across processors — how?
* Previous approaches have distributed learning neighborhoods of variables

L)
b2 ..
L)

P1

A

Candidate Variables

Iteration 1

Tech

Selected Georgia &

=

\i’ &21 St. Louis, MO

Parallel Framework — Key Design Ideas

e Distribute learning across processors — how?
* Previous approaches have distributed learning neighborhoods of variables

Lo
P1 ...
mEes

000 1
P OO mEy
B0 (@

Georgia
Iteration 2 Tech

=

\i’ &21 St. Louis, MO

Parallel Framework — Key Design Ideas

e Distribute learning across processors — how?
* Previous approaches have distributed learning neighborhoods of variables

2Ea | B L[[]
) \ L
Load Imbalance

(OO
I] Unclear how to fix
I]

)] Bl
P2 O N | (1)
88 ||)

Georgia
Iteration 3 Tech

=

\{" &21 St. Louis, MO

Parallel Framework — Key Design Ideas

e Distribute learning across processors — how?
* Previous approaches have distributed learning neighborhoods of variables

D080 |) 1)
b1 ...
e

0
P2 OO0 - - - Idle Processor

.. \ \ Coarse-grained work distribution

_ Georgia
Iteration 4 Tech

\F &21 St. Louis, MO

Parallel Framework — Key Design Ideas

e Distribute learning across processors — how?
* Previous approaches have distributed learning neighborhoods of variables

e Observation: Variables have different neighborhood sizes — distributing variables to
processors is suboptimal

» |dea: Distribute all the target and candidate variable pairs in parallel

Tech

=

Georgia &

\i’ &21 St. Louis, MO

Parallel Framework — Key Design Ideas

» |dea: Distribute all the target and candidate variable pairs in parallel

* DD
= MIDAEA
N !:[[['; Work per processor X Pairs per processor
- a o (™
: ANSRANAEEN ~06)
P2 [[[[[/
DDIDD

Georgia &
Tech

=

\{" &21 St. Louis, MO

Parallel Framework — Key Design Ideas

» |dea: Distribute all the target and candidate variable pairs in parallel

il DR
P i DRE0E
I DD
il DR
P2 . [[[[[
I DD

Selected | o 1 Ge?l'ggciﬁ &
Candidate Pairs G, =

\{" &21 St. Louis, MO

Parallel Framework — Key Design Ideas

» |dea: Distribute all the target and candidate variable pairs in parallel

U]
P1 ..
U]

U] Bl
b2 .. ’ ‘
W (]

=SEE SBEE
=SEE SBEE
=88 588
S88 SBE

Georgia &
Iteration 2 Tech|/

\{" &21 St. Louis, MO

Parallel Framework — Key Design Ideas

» |dea: Distribute all the target and candidate variable pairs in parallel

| | 0 D
8 | | DD

(] T DR
Load Imbalance

'j':]':] Can be alleviated
A

U
P1 ..
U]

LT e |
b2 .. ’ ‘ ’
i | |

Georgia &
Iteration 3 Tech W

\i’ &21 St. Louis, MO

Parallel Framework — Key Design Ideas

» |dea: Distribute all the target and candidate variable pairs in parallel

U
P1 ..
U]

nn | | Bln L
P2 B | e L Idle Processor
. BIF Can be avoided

Georgia
Iteration 4 Tech

=

\F &21 St. Louis, MO

Parallel Framework — Primary Data Structure

* c—scoresisalistoftuples< X,Y,0xy >st. X € X,Y € X \ {X}
* Oyy is the score of Y for addition to the MB set of X
* Tuples with the same X are contiguously arranged in the list

* Work distribution in parallel by distributing the tuples
* c—scores is block-distributed across processors — c—scores; on processor j

Georgia &
Tech

=

\F &21 St. Louis, MO

Parallel Framework — Components

Parallel Grow phase on processor j

* Update Oy for all the tuples € c—scores;
e Computation of Oyy is dependent on the algorithm
* AddY to the MB of X corresponding to the best Oyy
e Can be identified using two segmented parallel prefix operations for all the variables

Parallel Shrink phase on processor j
e Candidate MBs are available for local target variables — no communication

Parallel Symmetry Correction using algorithm by Nikolova et al. (2011)

Parallel PC from MB for local target variables on processor j

Tech

=

Georgia &

\F &21 St. Louis, MO

Parallel Skeleton — Blanket Learning

1 function PARALLEL-SKELETON-INTERIAMBY():
Input: X, D, APPLY-HEURISTIC, REDUCE-HEURISTIC

Output: PC(T) sets forall T € X
parallel j = processor’s rank do
Initialize c-scores;, variables;, MB(-) as described in subsection 3.2.1

Initialize neighbors as empty list of tuples
repeat

GROW-PHASE(D, c-scores, variables, MB, APPLY-HEURISTIC,
REDUCE-HEURISTIC)
+ SHRINK-PHASE(D, variables, MB)

until no MB(X) changes on any of the processors
8 - SHRINK-PHASE(D, variables, MB)

9 SYMMETRY-CORRECTION(variables, MDB)
10 Synchronize MB(-) across all the processors
11 . CONSTRUCT-PC(D, variables, MB, neighbors)

A Vv A W N

|

Tech

=

Georgia &

\i’ &21 St. Louis, MO

Implementation

* Implemented using C++ and MPI (conforms to C++14 and MPI 3.1)
Available at https://github.com/asrivast28/ramBLe

e Optimizations for fast execution in practice
* Algorithm specific optimizations — GS work reduction
* Experimented with different statistic computation strategies for Cl tests
* Dynamic load balancing scheme

Georgia &
Tech

=

https://github.com/asrivast28/ramBLe

\F &21 St. Louis, MO

Experiments and Results

* Experimental setup

* 64 nodes of the Hive cluster, 16 MPI processes per node — 1024 processes
* RHEL 7.6, gcc v9.2.0, MVAPICH2 v2.3.3

* Used real gene-expression data sets to learn gene networks

Genes Observations

Name Organism
. (n) (m)
DI S. cerevisiae 5,716 2,977
D2 A. thaliana 18,373 5,102

D3 A. thaliana 18,380 16,838

* Used three simulated data sets (S1, S2, and S3) to show scalability
e n=30,000; m = 10,000, edge addition probabilities: 5e — 5, 1e — 4, and 5e — 4 -
Georgia
Tech&

=

\F &21 St. Louis, MO

Experiments and Results

e Sequential comparison with prior state-of-the-art — bnlearn
e Popular library for learning BNs; C implementation interfaces with R

Algorithm Data set Run-time (s) Speedup
bnlearn (Ours
DI 8 720.0 240.1 36.3
GS D2 X 6 760.3 N/A
D3 X 18 695.0 N/A
DI 975.9 624.6 1.6
IAMB D2 40605.7 | 14529.8 2.8
D3 84403.1 | 46603.2 1.8
DI 992.0 624.1 1.6 _
Inter-IAMB | D2 40819.0 | 14559.0 2.8 Ge%gg;ﬂ &
D3 89839.7 (48442.4 1.9 =

\F &21 St. Louis, MO

Experiments and Results

e Sequential comparison with prior state-of-the-art — bnlearn
e Popular library for learning BNs; C implementation interfaces with R

 BNs learned by our implementations are similar to those by bnlearn
* Recalled 99.84% edges with a precision of 99.92% for D1 data set
e Changes in the ordering of the variables caused the differences

e Parallelism in bnlearn yields diminishing returns beyond a single node

* e.g., IAMB shows a self-speedup of 3.4X on 16 cores for D3 data set
while the self-speedup using 64 cores on four nodes is 3.9X

Tech

=

Georgia &

\F &21 St. Louis, MO

Experiments and Results

Parallel performance of our framework — notions of scalability

Strong Scaling

* Fixed total work; how does the run-time scale with increasing parallelism?
(n is kept constant as p increases)

Weak Scaling

* Fixed work per processor; how does the run-time scale with increasing parallelism?
(n is increased as p increases)

Speedup and efficiency are measured
» Perfect parallel algorithm shows linear speedup and 100% efficiency

Tech

=

Georgia &

\i’ &21 St. Louis, MO

Experiments and Results

e Strong scaling of our framework — IAMB

1024 100
512 | | @ gé
e = B
L 256 || D3 S 80
5 128 - : y - B
STl I PR Linear Speedup | . S
2 64 2 60
2 =
g 32 =
S 16 = 40
wn —_
oo & S
=) 2l -o-DI
& | - 220w p2
2 e +-D3
]-L [[[O
1 2 4 8 16 32 64 128 256 5121024 1 2 4 8 16 32 64 128 256 5121024

Number of cores (p) Number of cores (p)

\i’ &21 St. Louis, MO

Experiments and Results

e Strong scaling of our framework — Inter-IAMB

1024 100 B<C
512 || @ gé
" ~
S 128 : -5
o T || Linear Speedup =
2. 64 o 2 60
2 =
g 32 =
S 16 2 40
wn —
oo & S
=) 2l —o-DI
& | - 2 20 ap2
2 2 ~-D3
]l & 0 { T l
1 2 4 8 16 32 64 128 256 5121024 1 2 4 8 16 32 64 128 256 5121024

Number of cores (p) Number of cores (p)

\i’ &21 St. Louis, MO

Experiments and Results

e Strong scaling of our framework — GS

1024 100 &
512 | | 7@ gé
_ —
L 256 || s .. S 80
S 128 : >
S I R Linear Speedup | .- S
2 64 2 60
2 S
%" 32 =
S 16 2 40
wn e
oo & S
=) 2zl oDl
= § 20 || -m D2
2 c 4 D3
1 B [[‘ O 1 \ [\ \ 1
1 2 4 8 16 32 64 128 256 5121024 1 2 4 8 16 32 64 128 256 5121024

Number of cores (p) Number of cores (p)

\i’ &21 St. Louis, MO

Experiments and Results

* Investigating the scaling performance of GS
* High communication overhead due to lower total work?

100
- GS
30 - JAMB
Inter-IAMB
60

Fraction of total run — time
spent in communication (%) 4(

20

u/LP B |
Georgia

1 2 4 16 32 64 128 256 5121024 Tech&

Number of cores (p)

\i’ &21 St. Louis, MO

Experiments and Results

e Scaling performance of GS — real data versus simulated data

100 ¢ 100 &
< 80 K 80
> >
&) ®)
3 3
=] 60 g 00
5 5
g 40 £ 40
e 5
2 —-o-DI <z -0 51
= 20 || m D2 = 20 || m s2
Kot Kot
& A-D3 &é 483

O 1 1 [{ \ 1 0 \ | \ \
1 2 4 8 16 32 64 128 256 5121024 1 2 4 8 16 32 64 128 256 5121024

Number of cores (p) Number of cores (p)

\F &21 St. Louis, MO

Experiments and Results

* Weak scaling of our framework

* Fixed work per processor —how do we vary n with increasing p?
* Choose all the variables when using the largest p, a subset of variables for smaller p

e Estimated work per processor = "Z/p

* Chosen number of variables scale as y/p, i.e., Ny, = 1" /p, 0
* We chose the first n,, variables in the data sets for our experiments

Georgia &
Tech

=

\F &21 St. Louis, MO

Experiments and Results

* Weak scaling of our framework — D2

100 &
g 80 N o o — —
o
& 60
5
_%0 40
=
A - GS
5 20 || = I1AMB ‘
= 4 Inter-IAMB
O \ \
1 2 4 8 16 32 64 128 256 5121024 Georgia &
Tech

Number of cores (p) =

\F &21 St. Louis, MO

Experiments and Results

e Our parallel algorithms learn genome-scale BNs in < 1 minute on 1024 cores, down from
more than 13 hours sequentially

* Maximum speedup of 844.8X and 82.5% scaling efficiency on 1024 cores
* JAMB and Inter-IAMB show a sustained efficiency of > 75% for D2 and D3

* Learning BNs from simulated data sets takes < 2 minutes on 1024 cores, as compared to
more than a day sequentially

* Maximum speedup of 845X and 82.5% scaling efficiency on 1024 cores
* GS shows an improved efficiency of > 60% for all the data sets

Tech

=

Georgia &

\F &21 St. Louis, MO

Thanks! Questions?

Georgia &
Tech

=

