
LLNL-PRES-824898
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Introduction to Cardioid

Rob Blake

July 26, 2021



LLNL-PRES-824898
2

Why do cardiac modeling?

§ The heart is difficult to observe

§ Interventions are life threatening

§ Simulate before you intervene
— Basic Science
— Device Design
— Drug Development
— Surgery planning
— Risk stratification



LLNL-PRES-824898
3

The heart is an electrical/mechanical organ

Flavio Fenton, http://thevirtualheart.org Gurev, Trayanova



LLNL-PRES-824898
4

The heart requires multiscale modeling

§ Space: [10cm – 100um]

§ Time: [10s – 10us]

§ ~400 million cells

§ ~8 billion dofs



LLNL-PRES-824898
5

Bidomain model

§ Fe - Extracellular potential

§ Fi - Intracellular potential

§ Im - Membrane current

G. Plank, http://carp.medunigraz.at/ R. Bergman, http://www.anatomyatlases.org/ 



LLNL-PRES-824898
6

Bidomain model

§ Cm - Membrane capacitance

§ Vm - Transmembrane voltage

§ Iion - Ionic current

§ s - Ionic state



LLNL-PRES-824898
7

How to simulate your own heart

§ Clinical image -> simulations in ~2 hours



LLNL-PRES-824898
8

Monodomain Model of Heart1

computed from ten Tusscher et al., 20062, model of action potential in 
ventricular cells Calculation of Torso Potentials3

includes 11 different types of 
material torso including muscle, 
bone, and fat

1Mirin, A.A. et al (2012) 10.1109/SC.2012.108
2ten Tusscher K.H.W.J. and Panfilov A. V. (2006) Am J Physiol, 291, 1088-1100

3Bishop M.J. and Plank G. (2011) IEEE T Bio-Med Eng, 58, 2297-2307

LLNL-PRES-702868

Modeling surface potentials: ECG



LLNL-PRES-824898
9

Simulation of drug-induced ECG abnormality

Richards et al. Computer Methods in Biomechanics and Biomedical Engineering (2013)

e.g. sotalol, a b-adrenergic receptor and K+ channel 
blocker

LLNL-PRES-702868



LLNL-PRES-824898
10

Technical details



LLNL-PRES-824898
11

Cardioid was a Gordon Bell finalist

§ Each human heart has
— 400 million elements
— 8 billion DOF

§ 1 second of simulation requires
— 50k-100k timesteps
— Each timestep requires ~20 billion math function evaluations

§ Cardioid scales to all of Sequoia
— 60s of simulation in 67s wall time!! 



LLNL-PRES-824898
12

How Cardioid strong scaled to all of Sequoia

§ Only ~200 elements per thread

§ Replace all math functions with rational polynomials

§ Hard coded vector intrinsics in every critical loop

§ Bare metal coding to the machine
— SPI usage
— Thread barriers based on L2 cache access

§ My job when I got to the lab: Port all of this to Sierra/GPUs
— ...and make sure it’s fast!



LLNL-PRES-824898
13

Relevant performance characteristics

§ Cardioid uses a finite volume discretization on a regular grid.

§ Two main modes during computation
— Spatial diffusion – 50%

• Stencil computation
• Optimized for CPUs or GPUs
• Requires MPI communication
• Parallelism limited by network latency
• GPU performance limited by memory bandwidth

— Reaction ODEs – 50%
• ODE computation
• Embarrasingly parallel
• GPU/CPU performance limited by computation FLOPS

§ Different drivers implement different computational loops for 
CPU, GPU



LLNL-PRES-824898
14

Stencil computation

§ Network communication interleaved with computation

§ 19 point stencil 

§ Heavily optimized
— CPU: use openmp, vector intrinsics for faster computation
— GPU: use shared memory blocks, polyhedral loop optimization for fast 

code
• Currently fastest version uses Volta-specific instructions



LLNL-PRES-824898
15

Reaction ODE models

§ Always embarrassingly parallel

§ Compute bound
— 10-60 differential variables
— 100-2000 equations
— 50-400 math function invocations

§ Under constant refinement
— Drug effects
— Subcellular processes

§ Extremely hard to validate



LLNL-PRES-824898
16

Melodee goal: Port ODEs to GPUs

subsystem i_Ks_current {
shared Xs {1};
subsystem Xs_gate {

provides diffvar Xs;
alpha_xs = 1400/sqrt((1+exp((5-V)/6)));
beta_xs = 1/(1+exp((V-35)/15));
xs_inf = 1/(1+exp((-5-V)/14));
tau_xs = (1*alpha_xs*beta_xs+80);
Xs.init = 0.0087;
Xs.diff = (xs_inf-Xs)/tau_xs;

}
provides param g_Ks = 0.392;
P_kna = 0.03;
E_Ks = 

R*T/F*log((K_o+P_kna*Na_o)/(K_i+P_kna*Na_i));
i_Ks = g_Ks*Xs^2*(V-E_Ks);
provides accum i_Kitot += i_Ks;

}

§ Melodee is a language for ODEs

§ Scientists use matlab-like syntax

§ Melodee uses JIT+NVRTC 
compilation to optimize code to 
architecture
— Vectorization
— Rational polynomial replacement
— Automatic differentiation



LLNL-PRES-824898
17

Reaction model optimizations

§ Rational polynomials – replace expensive function evaluations with faster 
functions

§ Kernel fission vs fusion – separate the ODE into multiple functions or one 
function

§ Replace exp/log – variants based on floating point binary representation

§ Intrinsics –use the compiler to vectorize or do it ourselves

§ SoA vs AoS – How do we lay out our data structures?

Optimization BGQ P100 KNL
Rational polynomials yes yes no
Kernel fission vs fusion fission fusion fusion
Replace exp/log yes no no
Explicit vectorization with intrinsics yes no yes
SoA vs AoS SoA SoA AoS



LLNL-PRES-824898
18

Rational polynomials can replace 
expensive functions

becomes

double Afcaf = 0.3+0.6/(1.0+exp((v-10.0)/10.0));

double Afcaf;
{

double numerCoeff[]={-9.52275328672 ... };
double denomCoeff[]={2.18001528726e ... };
double numerator=_numerCoeff[0];
for (int jj=1; jj<8; jj++)

_numerator = numerCoeff[jj] + v*numerator;
double _denominator=denomCoeff[0];
for (int jj=1; jj<6; jj++)

_denominator = _denomCoeff[jj] + v*denominator;
Afcaf = numerator/denominator;

}



LLNL-PRES-824898
19

GPU: Embedding the coefficients is much faster

poly(double *in,
int np, double *p,
double *out)

{
int ii = blockIdx.x*blockDim.x + threadIdx.x;

out[ii]=in[ii];
double z = 0;
for (int k=np-1; k>=0; k--)

z = p[k] + z*in[ii];
out[ii] = z;

double *my_p[] = {...};
double z = 0;
for (int k=np-1; k>=0; k--)

z = my_p[k] + z*in[ii];
out[ii] = z;

Embedded:
40.760us

Memcpy:
30.940us

Naïve:
202.15us

np=60
in[1e6]
out[1e6]

/* 0x2b8 */
{ IADD32I R3, R3, -0x1;
LDG.E.64 R10, [R6]; }
ISETP.GT.AND P0, PT, R3, RZ, PT;
IADD32I R6.CC, R6, -0x8;
IADD32I.X R7, R7, -0x1;
DFMA R4, R8, R4, R10;
@P0 BRA 0x2b8;

DFMA R8,R2,R8,c[0x2][0x68];
DFMA R8,R2.reuse,R8,c[0x2][0x60];
DFMA R8,R2.reuse,R8,c[0x2][0x58];
...



LLNL-PRES-824898
20

Unrolling with a duff’s device

__constant__ double c_p[];
...
double z = 0;
switch (np) {

case 8: c_p[7] + z*in[ii];
case 7: c_p[6] + z*in[ii];
case 6: c_p[5] + z*in[ii];
case 5: c_p[4] + z*in[ii];
case 4: c_p[3] + z*in[ii];
case 3: c_p[2] + z*in[ii];
case 2: c_p[1] + z*in[ii];
case 1: c_p[0] + z*in[ii];
default:

}
out[ii] = z;

§ On CPUs, this is 
— just as fast as embedding
— uses run-time coefficients

§ On GPUs
— c_p must be constant memory
— c_p must be a constexpr
— ptxas doesn’t emit indirect branches

• Still have to pay for performance
• Memcpy: 30us
• Embedded: 40us
• Unrolled: 46us

Embedded coefficients are faster and simpler on GPUs

Unrolled



LLNL-PRES-824898
21

Intrinsics

§ BGQ, Haswell, KNL
— Compilers will NOT auto-vectorize this code
— Must generate vector intrinsics specific to platform

§ GPU
— No intrinsics necessary



LLNL-PRES-824898
22

Data layout

§ Haswell, KNL: AoSoV is faster

§ BGQ, GPU: SoA is faster

Structure of Arrays
struct state {
double x[n];
double y[n];

}

Array of Structures of Vectors
struct stateVec {
double x[vwidth];
double y[vwidth];

}
stateVec state[n/vwidth];



LLNL-PRES-824898
23

Competition: Niederer benchmark

§ Benchmark for cardiac simulations

§ 3mm x 7mm x 20mm tissue slab

§ Defined stimulus, fiber orientation

§ Problem can be scaled to 
accommodate large problem sizes



LLNL-PRES-824898
24

Goal: Run a convergence study

§ Real medical simulations depend on conduction velocity 
— == How fast the wavefront propagates

§ Investigate what resolution is required to get accurate 
conduction velocity simulations



LLNL-PRES-824898
25

Live Demo




