
Yin and Yang: Balancing Cloud Computing and HTCWorkloads
Zhuangwei Kang
Vanderbilt University
Nashville, Tennessee

zhuangwei.kang@vanderbilt.edu

Zhuo Zhen
University of Chicago

Chicago, Illinois
zhenz@uchicago.edu

Kate Keahey
Argonne National Laboratory

Chicago, Illinois
keahey@mcs.anl.gov

1 INTRODUCTION
Resources for computer science systems research need to be avail-
able on-demand to support interactive exploration; this requires
over-provisioning of infrastructure and results in resources under-
utilization (Figure 1). High Throughput Computing (HTC) [1] in-
volves running a large number of independent tasks implementing
a domain science application. HTC does not require interactivity
and is designed to be resilient to resource loss: tasks that do not
run to completion are simply re-executed, which may waste time
and energy.

Figure 1: Resource Utilization of ComputeHaswell nodes in
Chameleon

These two models – on-demand and on-availability schedul-
ing – are often seen as incompatible leading to “resource silos”,
i.e., resources that can only be used for this or that model, thus
lowering utilization potential and flexibility, as well as increasing
costs. This raises a question: can we combine academic clouds
like Chameleon[5] and the HTC systems like Open Science Grid
(OSG)[9] within one system such that objectives of both are sat-
isfied? Commercial cloud providers use preemptible instances to
solve a similar problem. Our objective is to explore a similar ap-
proach in academic clouds, via the use of preemptible instances
that encapsulate HTC workloads and can be deployed when the
system is not needed for interactive use.

Figure 2 shows a snapshot from the Chameleon calendar that
shows that there are gaps in resource usage between leases. In this
poster, we seek to answer the following questions:

(1) Can we fill these lease gaps by deploying HTC jobs?
(2) What is the most efficient strategy to do this?
(3) How can we minimize the cost of doing this by adopting

strategies that reduce HTC reruns?

Figure 2: Gantt Chart of Chameleon Host Reservations [2]
(Colorful bars represent leases, blank spaces indicate de-
vices are spare during the period.)

2 APPROACH
We developed a simulator CHISim (Figure 3) that replicates the
components and processing logic of the OpenStack Blazar1, the
Chameleon resource manager. Similar to the Blazar API, the Fron-
tEnd in CHISim accepts cloud lease requests and communicates
with the Resource Manager to assign resources to cloud users. Lease
requests are then forwarded to the Request Forecaster which pre-
dicts requests for the next time slot. Based on those predictions the
HTC job scheduler works with the Resource Manager to assign idle
resources to HTC jobs, and also to preempt HTC instances when
the nodes are requested by the cloud users.

In this work, we evaluated four preemption policies:
(1) Random: preempt nodes from the HTC pool arbitrarily;
(2) Recent-Deployed: preempt nodes that are assigned to HTC

most recently;
(3) Least-Core-Used: preempt nodes with the least number of

cores assigned to HTC jobs;
(4) Least-Resubmit: preempt nodes with the least number of

re-submissions.
The CHISim handles the unfinished jobs by placing them at the
head of the HTC queue and re-executing them from the initial state.
The Resource Manager sends advance notice of preemption to
HTC Scheduler when the Request Forecaster predicts an upcoming
takeaway of the resources from the cloud users.

The Resource Forecaster supports three prediction models (Fig-
ure 4):Rolling-Mean,Rolling-Median, and anLong Short-term
Memory (LSTM) -based deep learningmodel. The initial LSTM
model is trained offline with the Chameleon cloud trace dataset [3]
(March 2018 to May 2020), and updated online periodically.

1 https://docs.openstack.org/blazar/latest/

https://docs.openstack.org/blazar/latest/


Zhuangwei Kang, Zhuo Zhen, and Kate Keahey

Figure 3: CHISim Architecture

Figure 4: Request Forecasters

3 EVALUATION
With the simulator, we conducted and compared the following
experiments on three metrics - resource utilization improvement,
energy efficiency, and HTC node preemption.

(1) Baseline: run Chameleon user requests only(no advance
notice for preemption);

(2) Greedy algorithm: filling lease gaps with HTC jobs on all
available resources(no advance notice for preemption);

(3) Predictive filling: use forecasters and preemption policies
(conducted 12 experiments with 4 preemption policies and 3
prediction models).

3.1 Resource Utilization Improvement
In general, the average usage rate increases by 74.4%-75.9% (i.e.
figure 5) with the predictive filling methods relative to the baseline.

Figure 5: Resource Utilization Rate (read line: Chameleon
baseline usage, blue line: the total usage after deploying
HTC jobs with the Rolling-Median-based Request Fore-
caster and the Recent-Deployed preemption policy)

Forecaster

Utl Degradation(%) Policy
Random Least-Core-Used Least-Resubmit Recent-Deployed

Rolling-Mean 0.96 0.84 0.91 0.49
Rolling-Median 0.45 0.21 0.23 0.29
LSTM 1.22 0.99 0.95 1.10

Table 1: The differences between predictive filling ap-
proaches and the greedy algorithm in the average resource
utilization rate (𝑈𝑡𝑙𝑔𝑟𝑒𝑒𝑑𝑦 −𝑈𝑡𝑙𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 ). Rolling-Median in-
troduces the lowest cost than other methods.

The Request Forecaster reduces the utilization rate compared to the
greedy algorithm due to the over-provision caused by prediction
errors (Table 1).



Yin and Yang: Balancing Cloud Computing and HTC Workloads

Figure 6: HTC Node Preemption (preemption policy: Recent-Deployed)

3.2 Energy Efficiency
We measured the energy efficiency using the wasted core hours
of uncompleted HTC jobs due to preemption. The waste rate is
defined in equation 1. The Recent-Deployed policy has the lowest
waste rate because there is no wasted core hours if the instance is
preempted during the overhead time of re-configuring the node for
the HTC jobs.

𝑤𝑟 =
1
𝑁

𝑁∑
𝑛=1

100 ∗𝐶𝑜𝑟𝑒𝐻𝑜𝑢𝑟𝑠 (𝑤𝑎𝑠𝑡𝑒𝑑, 𝑖)
𝐶𝑜𝑟𝑒𝐻𝑜𝑢𝑟𝑠 (𝑡𝑜𝑡𝑎𝑙, 𝑖) (1)

Policy
Waste Rate(%) Forecaster

Greedy Filling Rolling-Mean Rolling-Median LSTM

Random 4.64 5.57 4.16 6.05
Least-Core-Used 3.69 4.59 3.85 5.00
Least-Resubmit 3.88 4.54 4.54 5.00
Recent-Deployed 2.95 2.62 2.09 2.71

Table 2: Mean Energy Waste Rate (energy is measured as
core hours; shadowed cell indicates the winner; the Recent-
Deployed preemption policy with the Rolling-Median Re-
quest Forecaster uses energy more efficiently.)

3.3 HTC Node Preemptions

Node Preemp-
tion Category Description

Sudden
The Forecaster underestimates the
Chameleon user requests, and the HTC jobs
will be terminated without advance notice.

Unused The Forecaster overestimates the user re-
quests, leading to unnecessary preemptions.

Advanced
HTC nodes are preempted with advance no-
tice and preempted resources are used by
Chameleon users as predicted.

Table 3: Node Preemption Categories

According to the difference between the predicted Chameleon
user requests and the true value, HTC node preemptions can be
classified into three categories (Table 3). It can be seen from Figure
6 that (1) enabling the Request Forecaster reduces the number of

sudden preemptions by 42.15% - 54.9% relative to the greedy algo-
rithm; (2) Rolling-Median-based forecaster produces more sudden
but less unused and total preemptions; (3) LSTM and Rolling-Mean
yield more unused preemptions.

4 RELATEDWORK
Providing preemptible instances can maximize the revenues of the
commercial cloud vendors and provide users with cost-effective and
partially reliable services. [8] In our work, we borrowed the con-
cept and used the preemptible instances to increase the resource
utilization in academic cloud testbeds by offering partially QoS
guarantee to the HTC users. Garcia et al. [4] designed a schema
for pluggable preemptible-aware VM scheduler, but failed to com-
pare various scheduling policies and to discuss the QoS of the HTC
jobs. In [7], the proposed scheduler only considered the submitted
HTC jobs. Without predicting the future allocation requests, the
scheduler yielded excessive unfinished HTC jobs, which caused
the energy-waste. Unlike virtual resources on a regular on-demand
cloud, physical resources on Chameleon must be reserved before
using them for an experiment. Once a reservation has been ac-
cepted, users are guaranteed that resources will be available at
the time they chose, which helps to plan large scale experiments.
The uniqueness of Chameleon requires a modified solution to our
previously proposed infrastructures [6] to reconcile with the HTC
systems.

5 CONCLUSION
Based on the observations, we provide the following take-home
messages on choosing the request forecasters and preemption poli-
cies:

(1) Combining Chameleon and HTC workloads can increase uti-
lizationwithout compromising the interactive access Chameleon
offers.

(2) The Recent-Deployed preemption policy is consistently the
most energy-efficient as it yields the least HTC job reruns.

(3) Different algorithms exhibit different trade-offs: the most
energy-efficient algorithm (Rolling-Median) has more sud-
den preemptions, while Rolling-Mean can provide more reli-
able advanced notifications to HTC with similar utilization
improvement. The LSTMmodel overestimates the cloud user
requests, and therefore, has more preemptions compared to
the statistical models.



Zhuangwei Kang, Zhuo Zhen, and Kate Keahey

REFERENCES
[1] Jim Basney and Miron Livny. 1999. Deploying a High Throughput Computing

Cluster. In High Performance Cluster Computing: Architectures and Systems, Volume
1, Rajkumar Buyya (Ed.). Prentice Hall PTR.

[2] Chameleon Cloud. [n.d.]. The Lease Calendars. https://chameleoncloud.readthe
docs.io/en/latest/technical/reservations.html#the-lease-calendars.

[3] Science Clouds. [n.d.]. Cloud traces | Science Clouds - Cloud computing for science.
https://www.scienceclouds.org/cloud-traces.

[4] Álvaro López García, Enol Fernández del Castillo, and Isabel Campos Plasencia.
2019. An efficient cloud scheduler design supporting preemptible instances. Future
Generation Computer Systems 95 (2019), 68–78.

[5] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,
Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,
Alexander Barnes, François Halbach, Alex Rocha, and Joe Stubbs. 2020. Lessons
Learned from the Chameleon Testbed. In Proceedings of the 2020 USENIX Annual

Technical Conference (USENIX ATC ’20). USENIX Association.
[6] Feng Liu, Kate Keahey, Pierre Riteau, and Jon Weissman. 2018. Dynamically

negotiating capacity between on-demand and batch clusters. In SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 493–503.

[7] Paul Marshall, Kate Keahey, and Tim Freeman. 2011. Improving utilization of
infrastructure clouds. In 2011 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing. IEEE, 205–214.

[8] Ashish Kumar Mishra, Brajesh Kumar Umrao, and Dharmendra K Yadav. 2018. A
survey on optimal utilization of preemptible VM instances in cloud computing.
The Journal of Supercomputing 74, 11 (2018), 5980–6032.

[9] Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain Roy,
Paul Avery, Kent Blackburn, Torre Wenaus, Frank Würthwein, Ian Foster, Rob
Gardner, Mike Wilde, Alan Blatecky, John McGee, and Rob Quick. 2007. The open
science grid. In J. Phys. Conf. Ser. (78, Vol. 78). 012057. https://doi.org/10.1088/1742-
6596/78/1/012057

https://chameleoncloud.readthedocs.io/en/latest/technical/reservations.html##the-lease-calendars
https://chameleoncloud.readthedocs.io/en/latest/technical/reservations.html##the-lease-calendars
https://www.scienceclouds.org/cloud-traces
https://doi.org/10.1088/1742-6596/78/1/012057
https://doi.org/10.1088/1742-6596/78/1/012057

	1 Introduction
	2 Approach
	3 Evaluation
	3.1 Resource Utilization Improvement
	3.2 Energy Efficiency
	3.3 HTC Node Preemptions

	4 Related Work
	5 Conclusion
	References

