
Camille Coti, Laure Petrucci, Daniel Alberto Torres González

Application-Based Fault Tolerance for
Numerical Linear Algebra at Large Scale

General Description
Fault tolerance

— Critical challenge required for
large scale systems

— Difficult to predict all possible
failures

— Ensure the correct termination
of subroutines

Approaches to handle failures
— System-level: specific middle-

ware
— Application-level: application

handles failures
Thesis Approach

— Based on fail-stop failures and
application-based approach

— Add fault-tolerant mechanisms
to computation kernels

Fault Tolerance
Communication-Avoiding

— Properties to design new sca-
lable and robust fault-tolerant
algorithms

Fault tolerance cost
— Consider executions without

fault-tolerance
— Measure overhead injected by

fault-tolerance mechanisms
— Measure recovery procedure
— Recover executions with as little

overhead as possible
Formal verification

— Fault tolerance verification with
formal methods

— Reliability, robustness, correct
functioning

Matrix Factorizations
Los Tres Amigos

— Part of the basic linear algebra
kernel

— Reduces computational com-
plexity of matrix operations

A =
L
U

A = Q

R

A =
L
LT

TS/CA Algorithms
TS algorithm

— Tall-and-skinny matrices
— Data distributed along a 1D
— TSLU, TSQR, TS-Cholesky

CA algorithm
— Potencially square matrices
— Minimizes inter-process com-

munication using a 2D grid of
processes

— CALU, CAQR, CA-Cholesky
Research Proposal

— Fault-tolerant TS/CA versions
— FT-TSLU, FT-TSQR, FT-TS-

Cholesky
— FT-CALU, FT-CAQR, FT-CA-

Cholesky
— Recover from crash-type errors
— Re-spawn failed processes,

communication restoration
— Keep track on the intermediate

results

TSLU/FT-TSLU Example

Failure-free

P0

P1

P2

P3

LU LU LU

1st step failure and recovery

P0

P1

P2

P3

LU

X

LU ER LU

CALU/FT-CALU Example

U

L

pa
ne

l

trailing
matrix

U

L

U

L

Tall and Skinny Formal Model

Processes
PROC×INT×PROC

∑
0≤q<t(q, 0, q)

compute
[q + 2s − q mod 2s−1 ≤ q′ < q + 2s+1 − q mod 2s−1 ∧ k′′ = min(k, k′)]

(q
, s
, k
)

(q
′ , s
, k
′)(q

, s
+
1,
k
′′)

(q
′ , s
+
1,
k
′′) INT×INT

MaxFail∑
0≤s≤dlog2 te(s, 2

s − 1)

nop
[q + 2s ≥ t]

(q, s, k)

(q, s+
1, k)

failures
[f > 0]

(q, s, k) (s
, f
)(s

, f
−
1)

LU Algorithms Results

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

TSLU Total OMPI
FTTSLU Total ULFM

FTTSLU Error Total ULFM

 0

 1000

 2000

 3000

 4000

 5000

 6000

64P 144P 256P 400P 576P 784P 1024P

Ti
m

e
 (

s)

Processes

CALU OMPI 32768x32768
FTCALU ULFM 32768x32768

FTCALU Error ULFM 32768x32768
CALU OMPI 65536x65536

FTCALU ULFM 65536x65536
FTCALU Error ULFM 65536x65536

CALU OMPI 100200x100200
FTCALU ULFM 100200x100200

FTCALU Error ULFM 100200x100200

— Already designed and implemented
algorithms validating the approach

— Currently designing new
fault-tolerant mechanisms for
QR/Cholesky

— Formal model to prove how failures
can be represented and modeled
under development

— It helps in proofs design for future
fault-tolerant algorithms

