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Application-Based Fault Tolerance for Numerical Linear
Algebra at Large Scale

CAMILLE COTI, LAURE PETRUCCI, and DANIEL ALBERTO TORRES GONZÀLEZ, LIPN,
CNRS UMR 7030, Université Sorbonne Paris Nord, FRANCE

Large scale architectures provide us with high computing power, but as the size of the systems grows,
computation units are more likely to fail. Fault-tolerant mechanisms have arisen in parallel computing to face
the challenge of dealing with all possible errors that may occur at any moment during the execution of parallel
programs. Algorithms used by fault-tolerant programsmust scale and be resilient to software/hardware failures.
Recent parallel algorithms have demonstrated properties that can be exploited to make them fault-tolerant. In
my thesis, we design, implement and evaluate parallel and distributed fault-tolerant numerical computation
kernels for dense linear algebra. We take advantage of intrinsic algebraic and algorithmic properties of
communication-avoiding algorithms in order to make them fault-tolerant. We are focusing on dense matrix
factorization kernels: we have results on LU and preliminary results on QR. Using performance evaluation and
formal methods, we are showing that they can tolerate crash-type failures, either re-spawning new processes
on-the-fly or ignoring the error.
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1 INTRODUCTION
High Performance Computing (HPC) systems continue growing exponentially; the number of
processors and nodes is increasing. Top500 is a statistical list with ranks and details of the 500
world’s most powerful supercomputers. The November 2020 Top500 ranking shows that 5 machines
feature more than a million of cores and all 500 machines listed have more than 10 000 cores (not
including accelerators). Meanwhile, as the number of hardware components increases, the overall
system Mean Time Between Failures (MTBF) is reduced to only a few hours [12]. For instance,
the supercomputer Blue Waters located at the National Center for Supercomputing Applications
(NCSA) at the University of Illinois had an MTBF of approximately 4.8 hours [11]. Therefore,
fault tolerance is necessary for such large scale systems to ensure that computational intensive
applications can survive failures with a small overhead.
The total number of hardware and software components, the complexity of these components

and the system reliability, availability and scalability are factors to deal with in HPC systems,
because hardware or software failures may occur anytime during the execution of high parallel
applications [9].
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2 Coti and Petrucci, et al.

We are working in the context of fail-stop failures. Several approaches exist to handle failures.
System-level fault tolerance is transparent to the user: the distributed run-time environment
implements mechanisms such as rollback recovery and the application does not need to be modified
[5]. In the thesis, we are following an application-based approach: our goal is to provide computation
kernels that can survive failures. We use the User-Level Failure Mitigation model [2]. Moreover, in
order to make sure that the application can survive failures at any moment of the execution, we
verify reliability properties of our algorithms with formal methods.

2 GENERAL DESCRIPTION
Our work focuses on adding fault-tolerant mechanisms to dense linear algebra algorithms to
make them able to survive in volatile environments in spite of failures. Our work is based on
communication-avoiding algorithms, in which we take advantage of properties that can be exploited
to design new scalable and robust fault-tolerant algorithms. For instance, introducing redundancy
of intermediate results [3, 7].

Fault-tolerant algorithms must be designed and evaluated considering how robust they are and
howmuch computational overhead they introduce with respect to a non-fault-tolerant algorithm [4].

To model and validate the robustness and the resilience of my algorithms, we use formal methods
(Coloured Petri Net model). A formal model developed in this thesis can be seen in [6]. It helps
proving reliability and correct functioning of a fault-tolerant tall and skinny algorithm. To measure
the cost of our fault-tolerant mechanisms on the performance, we first consider a failure-free
execution with no fault-tolerance mechanism as the baseline; we measure the overhead of the
fault-tolerance mechanism on a failure-free execution; last, we measure the cost of the recovery
procedure by injecting a random failure during the execution. Results show that these fault-tolerant
algorithms introduce very little computational overhead.

3 LU FACTORIZATION ALGORITHMS AND EXPERIMENTS
Many applications in linear algebra rely on a LU factorization, either for a tall-and-skinny matrix or
on a wider, potentially square, matrix. The TSLU algorithm was designed for a tall and skinny input
matrix (i.e. a matrix withM rows and N columns, withM ≫ N ); the data is distributed between
processes along a 1D distribution, allowing each of them holding complete lines.

The first phase consists of finding pivot rows to improve the numerical stability of the computation.
In TSLU we are using a specific algorithm, called tournament pivoting, in order to find the best
row-pivots to factor the entire matrix at low communication cost. The Communication-Avoiding LU
(CALU) [10] algorithm also factors a matrix as A = LU , taking a potentially square matrix as input.
It iterates over block-column sub-matrices called panels. A panel is the leftmost block-column sub-
matrix. Since a panel is a tall and skinny matrix, CALU uses TSLU to compute the LU factorization
of each panel. CALU uses a 2D grid of processes dividing the square matrix into smaller sub-blocks
and assigning each sub-block to be calculated to one process on the grid [1]. At each iteration, it
takes the leftmost non-processed panel and computes its LU factorization [8, 13].
FT-TSLU and FT-CALU are the fault-tolerant versions of TSLU and CALU proposed in this

research. They can recover from crash-type process failures at run-time and proceed with the
computation beyond them. When an error is detected by the run-time environment, they re-
spawn all the failed processes at once, repair the communicator used by the processes to exchange
information and the current state on the calculation of a matrix. To achieve this last property, they
keep track on the intermediate results obtained at each step backing them up on memory or on a
storage device. Hence, all processes are able to share their previous known results with a process
to be restored. The restoration procedure proposed in this work has been designed to allow any
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Application-Based Fault Tolerance for Numerical Linear Algebra at Large Scale 3

process in the global communicator to detect errors at any point of the algorithm, independently
from the task a process is in charge of.

We implemented our algorithms and evaluated their performance on the Grid’5000 platform. We
used the Gros cluster, which has 124 nodes, featuring one Intel Xeon Gold 5220 CPU, 18 cores/CPU,
96GB of RAM, two SSDs of 447GB and a 894GB SSD, and 2 × 25Gb Ethernet NICs each. We used
OpenMPI for non-fault-tolerant versins and ULFM 4.1.0u1a1 for the fault-tolerant ones. Input
matrix sizes are 32k×32k, 64k×64k and 100k×100k. Failures are injected by sending a SIGKILL
signal to the processes. In this case, the operating system sends closing notifications on the TCP
sockets used by the run-time environment and the failures are detected immediately. In real life,
this cannot happen when a failure occurs and we need to rely on a more advanced failure detection
mechanism. Although there exist more realistic techniques to inject failures, we chose not to use
them in order to isolate the algorithmic cost from the system cost, and evaluate the performance of
our algorithms separately from some system-specific costs.
In the poster presentation we will show execution times for CALU/FT-CALU, showing that

our algorithms scale satisfactorily as the number of processes increases. We will also show that
non-fault-tolerant and fault-tolerant failure-free executions are similar. Thus, added fault toler-
ance mechanisms generate a small overhead over non-fault-tolerant algorithms, but it is minimal
compared to the total execution time.

We have designed algorithms for QR and Cholesky factorizations following a similar approach,
and we are currently calculating their performance evaluation.
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