ILLINOIS INSTITUTE

OF TECHNOLOGY

Analysis of Scheduling Policies for Next-Generation
Rabbit Architecture

Keith Bateman "2 Stephen Herbein (Advisor)

Anthony Kougkas (Advisor)

Xian-He Sun (Advisor) ?

TLawrence Livermore National Laboratory 2lllinois Institute of Technology

l Lawrence Livermore
National Laboratory

Introduction

Rabbit node architecture is a supercomputer architecture with SSDs pooled at the top of racks [1, 2.

SSDs connected to compute nodes through both PCle connection and the network fabric simultaneously.
Will be integral in upcoming El Capitan supercomputer at Livermore (the primary usecase where this work is expected

to be applied).
Complicates storage scheduling.

With Rabbit node architecture, the scheduler has to balance load balancing (allocating SSDs across
different racks) and locality (optimizing the connection speed by placing SSDs on the same rack as

the job).

Jobs which require direct-attached (PCle) storage need storage to be purely rack-local always.
Jobs which require network-attached (fabric) storage may be rack-local, but also may want to balance their load across

as much of the network as possible.

The problem arises when a single rack is full from a direct-attach request and a network-attach

request wants to place one of its SSDs on that rack or vice-versa (when a network-attach request is
split across the whole cluster and a direct-attach request wants a single rack). It is the responsibility
of the scheduler, then, to broker the resources in order to strike a balance between locality and load

balancing.
Methodology
The objective of this research is to
discover ideal scheduling policies for
Rabbit node architecture.
Overall process
32 GB/s> devise a set of metrics

12.5 GBI/s 12.5 GB/s 32 GB/s>
N N

ynnectior

2GBSy ()12.5GBIs 12.5 GBIs 32 GBIs>

SSD CPU CPU m
- N N

12.5 GB/s 12.5 GB/s 32 GBIs>
N N

Rack 1 Rack 2

— T —1—
SSD SSD SSD
b 12.5 GBIs
PCle { CPU | ‘ CPU ‘ CPU ‘
N N N
32GBIs [2.5 GB/s
+— pcle — CPU CPU CPU
N JN JN
32GBIs [112.5 GB/s
— Pcle | CPU CPU CPU
N \ N .. ’N
Rack 1 Rack 2 Rack 3

(b) Rabbit Node Architecture

Figure 1: Changes in Supercomputer Architecture Demonstrated

sy

diagnose problems with current policies
according to those metrics

evaluate potential solutions to those
problems.

Evaluations use the Flux resource-query
utility [3]
Simulates scheduling requests across
resources with timing and allocation info
input: scheduling policy, system resource
information set, jobspecs

Resource sets

Suppose the hypothetical installation of
Rabbit nodes on the Sierra supercomputer
(large scale, comparable to other
supercomputers).

Demonstration: figure 1 shows the
expected changes evident in the Rabbit
architecture.

Rack-local PCle accesses of Rabbit node
SSDs could have up to 32 GB/s bandwidth
in a Sierra-like architecture.

Fabric accesses of Rabbit node SSDs could
have up to 12.5 GB/s bandwidth in a
Sierra-like architecture.

Although these numbers would differ
between architectures, there is a general
expectation that local PCle accesses will be
faster than remote fabric accesses.

Metrics

Makespan: The time that a schedule takes, from beginning to end.

Average Job Wait Time: The average time that it takes after submitting a job before it is able to

run.

SSD Utilization: The percentage of SSDs in the cluster which are allocated at a given time

Rack Imbalance: Standard deviation of allocated SSDs contained in each rack across the cluster, a

measurement of load balance.

Binary Locality: Sum of SSDs which are allocated on different racks from the CPUs of their job
allocation, a simple and network-agnostic measure of locality (i.e. each SSD contributes one hop or
zero hops, depending on whether it's on a different rack from the allocated CPUs or the same)

Policies

Scheduling policies traverse the graph representing the resource set to find resources that match the

request. This traversal is performed in Depth-First order.

Default: The “high” policy, prefers higher resource ID for a match.

Uniform-Storage: A policy which prefers to match to SSDs from racks with fewer SSDs allocated.

First: Just grabs the first available match. Fast and able to match unique resource requests (such as
requesting direct-attach and network-attach simultaneously), but less intelligent than other policies.

Rack Imbalance Problem

Rack Imbalance for Mixed Workload

14
>
L 12 —f\\du“uu‘nd;hdub———uu‘_
T S ——— —
T 10 -
L
0 8
% 6
© .
.g 4 — Default Policy
£ 2 . .
v Uniform-Storage Policy
o 0
©
Q Q Q Q Q Q Q Q Q
O N N N N N O O
* & FF L F S

Time Scheduled (s)

Figure 2: The rack imbalance of uniform-storage and default policies

Overhead of Uniform-Storage Policy

6
5
©
w4
3 .
A |
23 oL
o’ A 10V B
- \4 . ‘._.‘-‘ hy W
O SN ~
c1 ! 1 . — Default
-) Uniform-Storage

O D 1O O O DO 1O DD D OO O DO OO O DO

D LSRN LI 90 0,040 O O 1O oD D S
"qi”\?f\’,ﬂ"ﬁ’@%’@fﬁ%@'\Qf@%@'\“«@%”@q’&é\

ob Number

Rack imbalance can be ameliorated by
using a uniform-storage policy.

Figure 2 shows rack imbalance for a
mixed workload of a third each of
network-attached Rabbit jobs,
direct-attached Rabbit jobs, and jobs
that don't request Rabbits (with other
characteristics of jobs taken from
Lassen traces). Even though the only
jobs that can be balanced are the
network-attached, we end up seeing an
average 57.6% decrease in imbalance
across the whole workload.

Uniform-storage policy has some
(relatively small) overhead, as shown in
figure 3. Also notice the pattern
overall, which is that overhead
decreases as the cluster shrinks, spikes
as the cluster run out of space and we
move to the next free time, and then
repeats that pattern, increasing overall
as finding the next free time for the
cluster becomes more time-consuming.

Locality Problem

The expectation might be that
uniform-storage policy would increase

Binary Locality of Various Policies the binary locality metric.

21650
21600 It can be seen, however, that
2*38: 21550 uniform-storage shows a 1-2% decrease
T O 21500 in the metric from other policies.
§ O 21450 This is most likely because the other
58 21400 policies do nothing to optimize locality,
= 5 21350 so that spreading out SSDs actually
E 21300 has a chance of putting them on the
21250 same rack as CPUs

default first

uniform-storage
If this is correct, then a further policy

could be devised which would optimize
locality even further

Figure 4: Comparison of Binary Locality of Scheduling Policies

Conclusions

Our results have focused on the uniform-storage policy, and shown that, with negligible overhead, this
policy can improve both rack-imbalance (by about 60%) and locality (by 2%) from other policies.

Since rack imbalance is anticipated to be the most common concern of network-attached job requests,
this policy is expected to be very valuable as a baseline policy for those types of requests.

Locality is typically not a concern for these types of requests because the requests usually go through
the network fabric, so optimizing locality further for this type of request, while useful, is not the
primary concern.

Future work in this project will include evaluating more policies, potentially new ones to attempt to
improve upon the existing policies.
In particular, a policy which could schedule storage evenly across racks while also handling jobspecs that request both
direct-attach storage and network-attach storage would be useful, as the current uniform-storage policy can't traverse
requests like that.
We're also considering a locality-optimized policy.
Lastly, evaluations on real hardware or using information about the upcoming El Capitan supercomputer would be
valuable. In particular, information about the El Capitan network would lead to more detailed locality evaluations while
information about the scale of El Capitan would help to ensure more parity between evaluations and reality.

Acknowledgment

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

References

[1] Timothy Prickett Morgan. Livermore Converges A Slew Of New |deas For Exascale Storage.
https://www.nextplatform.com/2021/03/09/1ivermore-converges—-a-slew-of -new-ideas-for-exascale-storage/, 2021.

[2] Tiffany Trader. Livermore's El Capitan Supercomputer to Debut HPE 'Rabbit’ Near Node Local Storage.
https://www.hpcwire.com/2021/02/18/1livermores—-el-capitan-supercomputer-hpe-rabbit-storage-nodes/, 2021.

[3] Flux Team. Resource Query Utility.
https://github.com/flux-framework/flux-sched/blob/master/resource/utilities/resource-query.cpp, 2021.

SC Conference 2021, St Louis, MO

kbateman@hawk.iit.edu

