
Analysis of Scheduling Policies for Next-Generation Rabbit
Architecture

Keith Bateman, Stephen Herbein (Advisor) *, Anthony Kougkas (Advisor),
Xian-He Sun (Advisor)

kbateman@hawk.iit.edu,stephen@herbein.net,{akougkas,sun}@iit.edu
Illinois Institute of Technology, *Lawrence Livermore National Laboratory

ACM Reference Format:
Keith Bateman, Stephen Herbein (Advisor) *, Anthony Kougkas
(Advisor),, Xian-He Sun (Advisor). 2021. Analysis of Scheduling

Policies for Next-Generation Rabbit Architecture. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA,

2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The Rabbit node architecture is a unique supercomputer
architecture wherein SSDs are placed at the top of racks and
connected to compute nodes through both PCIe connection
and network fabric simultaneously, as in figure 1b. This
architecture will be integral in the upcoming El Capitan
supercomputer at Livermore, which is a valuable usecase
for this work. The scheduler will have to take into account
a delicate balance between load balancing, allocating SSDs
evenly across racks, and locality, optimizing the connection
speed by placing SSDs on the same rack as the job. These
two goals represent a broader conflict between jobs which
require direct-attached (PCIe) storage and jobs which require
network-attached (fabric) storage, which prefer locality and
load balancing, respectively. It is the responsibility of the
scheduler to broker resources in order to strike a balance
between locality and load balancing.

2 METHODOLOGY

The objective of this research is to discover ideal scheduling
policies for Rabbit node architecture. The process for this
involves devising a set of metrics, diagnosing problems with
the current policies according to those metrics, and finally
evaluating potential solutions to those problems. In order
to perform evaluations in steps 2 and 3, we used the Flux
resource-query utility, which simulates scheduling job requests
across a set of available resources given a scheduling policy
(as in section 2.2), outputting all the necessary information
about timings (e.g. when a job is scheduled and how long it
took to schedule) and allocations. In order to use this utility,

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

(a) Traditional Architecture

(b) Rabbit Node Architecture

Figure 1: Changes in Supercomputer Architecture
Demonstrated

we needed a simulated resource set, and the resource set we
chose supposes the hypothetical installation of Rabbit nodes
on the Sierra supercomputer. This is useful because the large
scale of Sierra makes it comparable to other supercomputers
where this architecture is expected to be used such as the
upcoming El Capitan.

2.1 Metrics

When considering which metrics were most relevant to this
study, we wanted to pick basic metrics and metrics which
would specifically address the locality problem inherent in
the Rabbit architecture. For simple metrics, we consider
makespan, average job wait time, and SSD utilization, as
well as the time that it takes to schedule each job. For special-
case metrics, we have a measure of rack imbalance as the
standard deviation of allocated SSDs contained in each rack
across the cluster, and a measure of binary locality as the
sum of SSDs which are allocated on different racks from the
CPUs of their job allocation (i.e. each SSD contributes one

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA
Keith Bateman, Stephen Herbein (Advisor) *, Anthony Kougkas (Advisor),

Xian-He Sun (Advisor)

Figure 2: The rack imbalance of uniform-storage and
default policies

Figure 3: The overhead of the uniform-storage policy

hop or zero hops, depending on whether it’s on a different
rack from the allocated CPUs or the same).

2.2 Policies

Scheduling policies traverse the graph representing the re-
source set in depth-first order to find resources that match
the request. The three major policies that we evaluate are
default (or high) policy, which is a fairly straightforward
matching policy which prefers higher resource IDs for match,
first policy, which just grabs the first available match with
minimal checking performed, and uniform-storage policy,
which prefers to match to SSDs from racks with fewer SSDs
allocated. Of these policies, evaluating uniform-storage policy
as a potential baseline for scheduling on Rabbit architecture
was considered a priority of this research.

3 EVALUATIONS

3.1 Rack Imbalance Problem

The problem of rack imbalance can be ameliorated by using
the uniform-storage policy. Figure 2 shows rack imbalance
for a mixed workload (one third each of network-attached

Figure 4: Comparison of Binary Locality of Schedul-
ing Policies

Rabbit, direct-attached Rabbit, and non-Rabbit jobs, with
other characteristics taken from Lassen traces). This shows
an average 57.6% decrease in imbalance across the whole
workload. Uniform-storage policy has some (relatively small)
overhead, as shown in figure 3.

3.2 Locality Problem

It’s reasonable to expect that uniform-storage policy would
increase the binary locality metric. It can be seen, however,
that uniform-storage shows a 1-2% decrease in the metric
from other policies. This is most likely because the other
policies do nothing to optimize locality, so that spreading
out SSDs actually has a chance of putting them on the same
rack as CPUs. If this is correct, then a further policy could
be devised which would optimize locality even further.

4 CONCLUSIONS AND FUTURE
WORK

Our results have focused on the uniform-storage policy, and
shown that, with negligible overhead, this policy can improve
both rack-imbalance (by about 60%) and locality (by 2%)
from other policies. Since rack imbalance is anticipated to be
the most common concern of network-attached job requests,
this policy is expected to be valuable as a baseline policy for
those types of requests.

Future work in this project will include evaluating more
policies. For example, exploration of a locality-optimized
policy. Also, further network optimizations are expected,
such as optimizing for the El Capitan slingshot network.

5 ACKNOWLEDGMENT

Prepared by LLNL under Contract DE-AC52-07NA27344.

	1 Introduction
	2 Methodology
	2.1 Metrics
	2.2 Policies

	3 Evaluations
	3.1 Rack Imbalance Problem
	3.2 Locality Problem

	4 Conclusions and Future Work
	5 Acknowledgment

