

Accelerating XOR-Based Erasure Coding using Program Optimization Techniques Yuya Uezato DWANGO, Co., Ltd.

"Accelerating Erasure Coding (EC)" means ...

Optimizing matrix multiplication over two finite fields:

- Byte Finite Field $\mathbb{F}\left[2^{8}\right]$ is a field with 256 elements.
- Bit Finite Field $\mathbb{F}[2]=\{0,1\}$ is a field with the two bits.

"Accelerating Erasure Coding (EC)" means ...

What we need to know about $\mathbb{F}\left[2^{8}\right]$ and $\mathbb{F}[2]$.
Optimizinध
$\mathbb{F}\left[2^{8}\right]$ is a field with $2^{8}=256$ elements.
\star 1-byte (8-bits) data can be seen as an element of $\mathbb{F}\left[2^{8}\right]$.

- The definition is complex. (We will see it in the later page).

"Accelerating Erasure Coding (EC)" means ...

What we need to know about $\mathbb{F}\left[2^{8}\right]$ and $\mathbb{F}[2]$.
Optimizinध
$\mathbb{F}\left[2^{8}\right]$ is a field with $2^{8}=256$ elements.
\star 1-byte (8-bits) data can be seen as an element of $\mathbb{F}\left[2^{8}\right]$.

- The definition is complex. (We will see it in the later page).
- Bit $\mathrm{Fi} \quad \mathbb{F}[2]=\{0,1\}$ is a field of bits.
$>$ Its addition is $\mathrm{XOR} \oplus$.
$>$ Its multiplication is AND \&.
- 0 and 1 satisfy the following:

$$
x \oplus 0=0 \oplus x=x, \quad y \& 1=1 \& y=y .
$$

"Accelerating Erasure Coding (EC)" means ...

Optimizing matrix multiplication over two finite fields:

- Byte Finite Field $\mathbb{F}\left[2^{8}\right]$ is a field with 256 elements.
- Bit Finite Field $\mathbb{F}[2]=\{0,1\}$ is a field with the two bits.
A is small. B is large.

"Accelerating Erasure Coding (EC)" means ...

Optimizing matrix multiplication over two finite fields:

$$
\begin{array}{lll}
(\text { for Standard EC) } & A \times B & \text { over } \mathbb{F}\left[2^{8}\right] \\
(\text { for XOR-based EC) } & C \times D & \text { over } \mathbb{F}[2]
\end{array}
$$

- Byte Finite Field $\mathbb{F}\left[2^{8}\right]$ is a field with 256 elements.
- Bit Finite Field $\mathbb{F}[2]=\{0,1\}$ is a field with the two bits.
A is small. B is large. In this talk, as an example, we consider:

"Accelerating Erasure Coding (EC)" means ...

Optimizing matrix multiplication over two finite fields:

- Byte Finite Field $\mathbb{F}\left[2^{8}\right]$ is a field with 256 elements.
- Bit Finite Field $\mathbb{F}[2]=\{0,1\}$ is a field with the two bits.
A is small. B is large. In this talk, as an example, we consider:

This setting comes from erasure coding.

What are Erasure Coding (EC) and XOR-Based EC

Erasure Coding: Method for Data Redundancy

Example (Building a streaming media server with criteria)

1. We have 14 nodes. Each node has a 20TB disk.
2. We can load data even if nodes ≤ 4 are down.
3. The total capacity of our server $=200 \mathrm{~TB}$.

- $14 \cdot 20-200=80$ TB can be used for data redundancy.

Erasure Coding: Method for Data Redundancy

Example (Building a streaming media server with criteria)

1. We have 14 nodes. Each node has a 20TB disk.
2. We can load data even if nodes ≤ 4 are down.
3. The total capacity of our server $=200 \mathrm{~TB}$.

- $14 \cdot 20-200=80$ TB can be used for data redundancy.

For this criteria, we can employ Reed-Solomon EC $\mathbf{R S}(d=10, p=4)$.
$\checkmark d$: we can assume d-nodes are living. $(d=14-p=10)$.
$>p$: we can permit nodes $\leq p$ go down. $(p=4)$.

Erasure Coding: Method for Data Redundancy

Example (Building a streaming media server with criteria)

1. We have 14 nodes. Each node has a 20TB disk.
2. We can load data even if nodes ≤ 4 are down.
3. The total capacity of our server $=200$ TB.

- $14 \cdot 20-200=80$ TB can be used for data redundancy.

For this criteria, we can employ Reed-Solomon EC $\mathrm{RS}(d=10, p=4)$.
$\checkmark d$: we can assume d-nodes are living. $(d=14-p=10)$.
$>p$: we can permit nodes $\leq p$ go down. $(p=4)$.

Erasure Coding: Method for Data Redundancy

Example (Building a streaming media server with criteria)

1. We have 14 nodes. Each node has a 20TB disk.
2. We can load data even if nodes ≤ 4 are down.
3. The total capacity of our server $=200 \mathrm{~TB}$.

- $14 \cdot 20-200=80$ TB can be used for data redundancy.

For this criteria, we can employ Reed-Solomon EC $\mathrm{RS}(d=10, p=4)$.
$\downarrow d$: we can assume d-nodes are living. $(d=14-p=10)$.
$>p$: we can permit nodes $\leq p$ go down. $(p=4)$.

How encoding and decoding are implemented in $\operatorname{RS}(10,4)$?

How encoding and decoding are implemented in $\mathrm{RS}(10,4)$?

- V: Vandermonde matrix

How encoding and decoding are implemented in $\operatorname{RS}(10,4)$?

How encoding and decoding are implemented in $\operatorname{RS}(10,4)$?

- V : Vandermonde matrix
- W : square submatrix of \mathcal{W}

$$
\begin{array}{l|lll}
\frac{N}{10} & \frac{N}{10} & & \frac{N}{10} \\
\hline f_{i_{1}} & f_{i_{2}} & \cdots & f_{i_{10}} \\
\hline
\end{array}
$$

How encoding and decoding are implemented in $\operatorname{RS}(10,4)$?

How encoding and decoding are implemented in $\operatorname{RS}(10,4)$?

$$
\left.\stackrel{N \text {-bytes }}{\square} \xrightarrow{\text { split }} \stackrel{\frac{N}{10}}{\frac{\frac{N}{10}}{d_{1}}} \right\rvert\, \frac{\frac{N}{d_{2}}}{d_{2}} \cdots \frac{\frac{N}{10}}{d_{10}}
$$

How large is N in a real application?
In my company, D is a short video whose size is $10 \mathrm{MB}-40 \mathrm{MB}$:

- The size of 10 secs videos of 1080 p \& 30fps $\sim 12 \mathrm{MB}$.
- The size of 5 secs videos of $4 \mathrm{~K} \& 30 \mathrm{fps} \sim 35 \mathrm{MB}$.
- V : Vandermonde matrix
- \mathcal{W} : square submatrix of \mathcal{W}
- We have \mathcal{W}^{-1} since
\mathcal{V} is a Vandermonde matrix.

Optimizing $\mathcal{V} \times_{\mathbb{F}\left[2^{8}\right]} D$

Q. What is the heaviest operation on $\mathcal{V} \times_{\mathbb{F}\left[2^{8}\right]} D$?
A. Multiplication of $\mathbb{F}\left[2^{8}\right]$:

Optimizing $\mathcal{V} \times_{\mathbb{F}\left[2^{8}\right]} D$

Q. What is the heaviest operation on $\mathcal{V} \times_{\mathbb{F}\left[2^{8}\right]} D$?
A. Multiplication of $\mathbb{F}\left[2^{8}\right]$:

- Internally, $p \in \mathbb{F}\left[2^{8}\right]$ is a 7 -degree polynomial over $\mathbb{F}[2]$:

$$
b_{7} x^{7}+b_{6} x^{6}+\cdots+b_{1} x+b_{0} \quad \text { where } b_{i} \in \mathbb{F}[2] .
$$

Optimizing $\mathcal{V} \times_{\mathbb{F}\left[2^{8}\right]} D$

Q. What is the heaviest operation on $\mathcal{V} \times_{\mathbb{F}\left[2^{8}\right]} D$?
A. Multiplication of $\mathbb{F}\left[2^{8}\right]$:

- Internally, $p \in \mathbb{F}\left[2^{8}\right]$ is a 7-degree polynomial over $\mathbb{F}[2]$:

$$
b_{7} x^{7}+b_{6} x^{6}+\cdots+b_{1} x+b_{0} \quad \text { where } b_{i} \in \mathbb{F}[2] .
$$

$>p_{1}+p_{2}$ of $\mathbb{F}\left[2^{8}\right]$ is the polynomial addition.
Easy because just componentwise XOR:

$$
\left(b_{7} \oplus b_{7}^{\prime}\right) x^{7}+\left(b_{6} \oplus b_{6}^{\prime}\right) x^{6}+\cdots+\left(b_{0} \oplus b_{0}^{\prime}\right)
$$

Optimizing $\mathcal{V} \times_{\mathbb{F}\left[2^{8}\right]} D$

Q. What is the heaviest operation on $\mathcal{V} \times_{\mathbb{F}\left[2^{8}\right]} D$?
A. Multiplication of $\mathbb{F}\left[2^{8}\right]$:

- Internally, $p \in \mathbb{F}\left[2^{8}\right]$ is a 7 -degree polynomial over $\mathbb{F}[2]$:

$$
b_{7} x^{7}+b_{6} x^{6}+\cdots+b_{1} x+b_{0} \quad \text { where } b_{i} \in \mathbb{F}[2] .
$$

> $p_{1}+p_{2}$ of $\mathbb{F}\left[2^{8}\right]$ is the polynomial addition.
Easy because just componentwise XOR:

$$
\left(b_{7} \oplus b_{7}^{\prime}\right) x^{7}+\left(b_{6} \oplus b_{6}^{\prime}\right) x^{6}+\cdots+\left(b_{0} \oplus b_{0}^{\prime}\right) .
$$

- On the other hand, $p_{1} \cdot p_{2}$ of $\mathbb{F}\left[2^{8}\right]$ is CPU-heavy and slow:

1. We do the 7 -degree polynomial multiplication $p_{1} \times p_{2}$.
2. We take the modulo by a special polynomial $\left(p_{1} \times p_{2}\right) \bmod p$.

Optimizing $\mathcal{V} \times_{\mathbb{F}\left[2^{8}\right]} D$

Q. What is the heaviest operation on $\mathcal{V} \times_{\mathbb{F}\left[2^{8}\right]} D$?
A. Multiplication of $\mathbb{F}\left[2^{8}\right]$:

- Internally, $p \in \mathbb{F}\left[2^{8}\right]$ is a 7 -degree polynomial over $\mathbb{F}[2]$:

$$
b_{7} x^{7}+b_{6} x^{6}+\cdots+b_{1} x+b_{0} \quad \text { where } b_{i} \in \mathbb{F}[2] .
$$

> $p_{1}+p_{2}$ of $\mathbb{F}\left[2^{8}\right]$ is the polynomial addition.
Easy because just componentwise XOR:

$$
\left(b_{7} \oplus b_{7}^{\prime}\right) x^{7}+\left(b_{6} \oplus b_{6}^{\prime}\right) x^{6}+\cdots+\left(b_{0} \oplus b_{0}^{\prime}\right) .
$$

- On the other hand, $p_{1} \cdot p_{2}$ of $\mathbb{F}\left[2^{8}\right]$ is CPU-heavy and slow:

1. We do the 7 -degree polynomial multiplication $p_{1} \times p_{2}$.
2. We take the modulo by a special polynomial $\left(p_{1} \times p_{2}\right) \bmod p$.

XOR-based EC is one way to vanish • of $\mathbb{F}\left[2^{8}\right]$.

XOR-based EC: From $\mathbb{F}\left[2^{8}\right]$ to BitMatrix ($\mathbb{F}[2]$-Matrix)

$>$ 1-byte and 8-bits are isomorphic: $x \in \mathbb{F}\left[2^{8}\right] \cong \widetilde{x} \in 8 \mid \mathbb{F}[2]$

XOR-based EC: From $\mathbb{F}\left[2^{8}\right]$ to BitMatrix ($\mathbb{F}[2]$-Matrix)

\checkmark 1-byte and 8-bits are isomorphic: $x \in \mathbb{F}\left[2^{8}\right] \cong \widetilde{x} \in 8 \mathbb{F}[2]$
\rightarrow There is an injective ring homomorphism $\mathcal{B}: \mathbb{F}\left[2^{8}\right] \rightarrow 8 \mathbb{F}[2] \quad$ I.e.,

XOR-based EC: From $\mathbb{F}\left[2^{8}\right]$ to BitMatrix ($\mathbb{F}[2]$-Matrix)

1-byte and 8-bits are isomorphic: $x \in \mathbb{F}\left[2^{8}\right] \cong \widetilde{x} \in 8 \mathbb{F}[2]$

There is an injective ring homomorphism $\mathcal{B}: \mathbb{F}\left[2^{8}\right] \rightarrow 8 \quad \mathbb{F}[2] \quad$ I.e.,

$$
\forall x, y \in \mathbb{F}\left[2^{8}\right] .\left\{\begin{aligned}
x+y & =\mathcal{B}^{-1}(\mathcal{B}(x)+\mathcal{B}(y)) \\
x \cdot y & =\mathcal{B}^{-1}(\mathcal{B}(x) \times \mathcal{B}(y))
\end{aligned}\right.
$$

XOR-based EC: From $\mathbb{F}\left[2^{8}\right]$ to BitMatrix ($\mathbb{F}[2]$-Matrix)

1-byte and 8-bits are isomorphic: $x \in \mathbb{F}\left[2^{8}\right] \cong \widetilde{x} \in 8 \mathbb{F}[2]$
\rightarrow There is an injective ring homomorphism $\mathcal{B}: \mathbb{F}\left[2^{8}\right] \rightarrow 8 \quad \mathbb{F}[2] \quad$ I.e.,

$$
\forall x, y \in \mathbb{F}\left[2^{8}\right] .\left\{\begin{aligned}
x+y & =\mathcal{B}^{-1}(\mathcal{B}(x)+\mathcal{B}(y)) \\
x \cdot y & =\mathcal{B}^{-1}(\mathcal{B}(x) \times \mathcal{B}(y))
\end{aligned}\right.
$$

Prop: Emulate $\mathcal{W}^{-1} \times(\mathcal{W} \times D)=D$ in the $\mathbb{F}[2]$ world

$$
\mathcal{B}\left(\mathcal{W}^{-1}\right) \stackrel{\mathbb{F}[2]}{\times}(\mathcal{B}(\mathcal{W}) \stackrel{\mathbb{F}[2]}{\times} \widetilde{D})=\mathcal{B}\left(\mathcal{W}^{-1} \times \mathcal{W}\right) \times \widetilde{D}=\widetilde{D} .
$$

XOR-based EC: From $\mathbb{F}\left[2^{8}\right]$ to BitMatrix ($\mathbb{F}[2]$-Matrix)

1-byte and 8-bits are isomorphic: $x \in \mathbb{F}\left[2^{8}\right] \cong \widetilde{x} \in 8 \mathbb{F}[2]$
\rightarrow There is an injective ring homomorphism $\mathcal{B}: \mathbb{F}\left[2^{8}\right] \rightarrow 8 \quad \mathbb{F}[2]$

$$
\begin{gathered}
\left(\begin{array}{cc}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right) \times_{\mathbb{F}\left[2^{8}\right]}\left(\begin{array}{cc}
d_{1} & \cdots \\
d_{2} & \cdots
\end{array}\right)=\left(\begin{array}{c}
x_{1} \cdot d_{1}+x_{2} \cdot d_{2} \\
x_{3} \cdot d_{1}+x_{4} \cdot d_{4} \\
\cdots
\end{array}\right) \\
\Downarrow \\
\left(\begin{array}{ccccc}
1 & 1 & 0 & 1 & \cdots \\
0 & 0 & 1 & 1 & \cdots \\
0 & 1 & 1 & 0 & \cdots \\
1 & 0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \times_{\mathbb{F}[2]}\left(\begin{array}{c}
\vec{x}_{1} \\
\vec{x}_{2} \\
\vec{x}_{3} \\
\vec{x}_{4} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\overrightarrow{x_{1}} \oplus \overrightarrow{x_{2}} \oplus \overrightarrow{x_{4}} \oplus \cdots \\
\overrightarrow{x_{3}} \oplus \vec{x}_{4} \oplus \cdots \\
\vec{x}_{2} \oplus \vec{x}_{3} \oplus \cdots \\
\vec{x}_{1} \oplus \vec{x}_{4} \oplus \cdots \\
\vdots
\end{array}\right)
\end{gathered}
$$

\oplus is byte-array XOR.

Comparing MM over $\mathbb{F}\left[2^{8}\right]$ and MM over $\mathbb{F}[2]$ for Encoding

Trade-off in Matrix Multiplication	$\mathrm{RS}(10,4)$ by $\mathbb{F}\left[2^{8}\right]$	$\mathrm{RS}(10,4)$ by $\mathbb{F}[2]$
Number of Core Operation	$\mathcal{V}: 14\left[\mathbb{F}\left[2^{8}\right]\right.$	$\mathcal{B}(\mathcal{V}): 112[\mathbb{F}[2]$
Speed of Core Operation	+ of $\mathbb{F}\left[2^{8}\right]$ is fast of $\mathbb{F}\left[2^{8}\right]$ is slow	bytevec-XOR \oplus is fast (SIMDable)

Comparing MM over $\mathbb{F}\left[2^{8}\right]$ and MM over $\mathbb{F}[2]$ for Encoding

Trade-off in Matrix Multiplication	$\operatorname{RS}(10,4)$ by $\mathbb{F}\left[2^{8}\right]$	$\mathrm{RS}(10,4)$ by $\mathbb{F}[2]$
Number of Core Operation	$\mathcal{V}: 14\left[\mathbb{F}\left[2^{8}\right]\right.$	$\mathcal{B}(\mathcal{V}): 112[\mathbb{F}[2]$
Speed of Core Operation	+ of $\mathbb{F}\left[2^{8}\right]$ is fast of $\mathbb{F}\left[2^{8}\right]$ is slow	bytevec-XOR \oplus is fast (SIMDable)

Encoding Throughput Comparison (on Intel CPU):

GB / s	ISA-L ${ }^{3} \mathbb{F}\left[2^{8}\right]$	State-of-the-art $\mathbb{F}[2]$	
$\mathrm{RS}(10,4)$	6.79	4.94	
$\mathrm{RS}(10,3)$	6.78	6.15	
$\mathrm{RS}(9,3)$	7.31	6.17	

© ISA-L: Intel's EC library https://github.com/intel/isa-l
© T. Zhou \& C. Tian. 2020. Fast Erasure Coding for Data Storage: A Comprehensive Study of the Acceleration Techniques.

Comparing MM over $\mathbb{F}\left[2^{8}\right]$ and MM over $\mathbb{F}[2]$ for Encoding

Trade-off in Matrix Multiplication	$\mathrm{RS}(10,4)$ by $\mathbb{F}\left[2^{8}\right]$	$\mathrm{RS}(10,4)$ by $\mathbb{F}[2]$
Number of Core Operation	$\mathcal{V}: 14\left[\begin{array}{l}10 \\ \left.\hline 2^{8}\right]\end{array}\right.$	$\mathcal{B}(\mathcal{V}): 112[\mathbb{F}[2]$
Speed of Core Operation	+ of $\mathbb{F}\left[2^{8}\right]$ is fast of $\mathbb{F}\left[2^{8}\right]$ is slow	bytevec-XOR \oplus is fast (SIMDable)

Encoding Throughput Comparison (on Intel CPU):

GB / s	ISA-L ${ }^{2} \mathbb{F}\left[2^{8}\right]$	State-of-the-art $\mathbb{F}[2]$	Ours(New!) $\mathbb{F}[2]$
$\mathrm{RS}(10,4)$	6.79	4.94	8.92
$\mathrm{RS}(10,3)$	6.78	6.15	11.78
$\mathrm{RS}(9,3)$	7.31	6.17	11.97

3 ISA-L: Intel's EC library https://github.com/intel/isa-1
@ T. Zhou \& C. Tian. 2020. Fast Erasure Coding for Data Storage: A Comprehensive Study of the Acceleration Techniques.

Our Contribution:

Optimizing Bitmatrix Multiplication

> as

Program Optimization Problem

MM over $\mathbb{F}[2]=$ Running Straight Line Program

We identify bitmatrix multiplication as straight line program (SLP):

$$
\begin{gathered}
\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right) \underset{\mathbb{F}[2]}{\Downarrow} \underset{\left(\begin{array}{l}
\vec{a} \\
\vec{b} \\
\vec{c} \\
\vec{d}
\end{array}\right)}{\qquad} \begin{array}{c}
P(a, b, c, d) \\
v_{1} \leftarrow a \oplus b ; \\
v_{2} \leftarrow a \oplus b \oplus c ; \\
v_{3} \leftarrow b \oplus c \oplus d ; \\
\quad \text { return }\left(v_{1}, v_{2}, v_{3}\right)
\end{array}
\end{gathered}
$$

MM over $\mathbb{F}[2]=$ Running Straight Line Program

We identify bitmatrix multiplication as straight line program (SLP):

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right) \underset{\mathbb{F}[2]}{\Downarrow}\left(\begin{array}{l}
\vec{a} \\
\vec{b} \\
\vec{c} \\
\vec{d}
\end{array}\right)=\left(\begin{array}{c}
\vec{a} \oplus \vec{b} \\
\vec{a} \oplus \vec{b} \oplus \vec{c} \\
\vec{b} \oplus \vec{c} \oplus \vec{d}
\end{array}\right) \\
& \begin{array}{l}
P(a, b, c, d) \\
v_{1} \leftarrow a \oplus b ;
\end{array} \\
& v_{2} \leftarrow a \oplus b \oplus c ; \\
& v_{3} \leftarrow b \oplus c \oplus d ; \\
& \text { return }\left(v_{1}, v_{2}, v_{3}\right)
\end{aligned}
$$

MM over $\mathbb{F}[2]=$ Running Straight Line Program

We identify bitmatrix multiplication as straight line program (SLP):

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right) \underset{\Downarrow}{\Downarrow} \underset{\mathbb{F}[2]}{ }\left(\begin{array}{c}
\vec{a} \\
\vec{b} \\
\vec{c} \\
\vec{d}
\end{array}\right)=\left(\begin{array}{c}
\vec{a} \oplus \vec{b} \\
\vec{a} \oplus \vec{b} \oplus \vec{c} \\
\vec{b} \oplus \vec{c} \oplus \vec{d}
\end{array}\right) \\
& \begin{array}{l}
P(a, b, c, d) \\
v_{1} \leftarrow a \oplus b
\end{array} \\
& v_{2} \leftarrow a \oplus b \oplus c ; \\
& \llbracket P \rrbracket=\operatorname{return}\left(v_{1}, v_{2}, v_{3}\right) \\
& =\langle a \oplus b, \\
& a \oplus b \oplus c \text {, } \\
& v_{3} \leftarrow b \oplus c \oplus d ; \\
& b \oplus c \oplus d\rangle \\
& \operatorname{return}\left(v_{1}, v_{2}, v_{3}\right)
\end{aligned}
$$

* "Bitmatrix as SLP" is not a new idea (See. Boyar+ 2008)

MM over $\mathbb{F}[2]=$ Running Straight Line Program

We identify bitmatrix multiplication as straight line program (SLP):

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right) \underset{\mathbb{F}[2]}{\Downarrow}\left(\begin{array}{c}
\vec{a} \\
\vec{b} \\
\vec{c} \\
\vec{d}
\end{array}\right)=\left(\begin{array}{c}
\vec{a} \oplus \vec{b} \\
\vec{a} \oplus \vec{b} \oplus \vec{c} \\
\vec{b} \oplus \vec{c} \oplus \vec{d}
\end{array}\right) \\
& \begin{array}{l}
P(a, b, c, d) \\
v_{1} \leftarrow a \oplus b ;
\end{array} \\
& v_{2} \leftarrow a \oplus b \oplus c ; \\
& \llbracket P \rrbracket=\operatorname{return}\left(v_{1}, v_{2}, v_{3}\right) \\
& =\langle a \oplus b, \\
& a \oplus b \oplus c, \\
& v_{3} \leftarrow b \oplus c \oplus d ; \\
& b \oplus c \oplus d\rangle \\
& \text { return }\left(v_{1}, v_{2}, v_{3}\right)
\end{aligned}
$$

* "Bitmatrix as SLP" is not a new idea (See. Boyar+ 2008)
- SLP only allow assignments with one kind binary operator \oplus.
- SLP do not have functions, if-branchings, and while-loop, etc.

XOR Optimization: Reducing XORs

Optimization Metric $\# \oplus(-)$: the number of XORs.

$$
\begin{aligned}
& P \quad \# \oplus=8 \\
& v_{1} \leftarrow a \oplus b \\
& v_{2} \leftarrow a \oplus b \oplus c ; \\
& v_{3} \leftarrow a \oplus b \oplus c \oplus d ; \\
& v_{4} \leftarrow b \oplus c \oplus d ; \\
& \\
& \quad \begin{array}{l}
\text { return }\left(v_{1}, v_{2}, v_{3}, v_{4}\right)
\end{array} \quad \Longrightarrow
\end{aligned}
$$

XOR Optimization: Reducing XOR

Optimization Metric $\# \oplus(-)$: the number of KORs.

$$
\begin{aligned}
& \frac{P \quad \# \oplus=8}{v_{1} \leftarrow a \oplus b ;} \\
& \frac{Q}{v_{1} \leftarrow a \oplus b ;} \\
& v_{2} \leftarrow a \oplus b \oplus c ; \\
& v_{3} \leftarrow a \oplus b \oplus c \oplus d ; \\
& \Longrightarrow \\
& v_{4} \leftarrow b \oplus c \oplus d ; \\
& \operatorname{return}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)
\end{aligned}
$$

XOR Optimization: Reducing XORs

Optimization Metric $\# \oplus(-)$: the number of XORs.

$$
\begin{aligned}
& P \quad \# \oplus=8 \\
& v_{1} \leftarrow a \oplus b ; \\
& v_{2} \leftarrow a \oplus b \oplus c ; \\
& v_{3} \leftarrow a \oplus b \oplus c \oplus d ; \\
& v_{4} \leftarrow b \oplus c \oplus d ; \\
& \\
& \text { return }\left(v_{1}, v_{2}, v_{3}, v_{4}\right)
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& \text { Q } \\
& v_{1} \leftarrow a \oplus b ; \\
& v_{2} \leftarrow v_{1} \oplus c ; \\
&
\end{aligned}
$$

XOR Optimization: Reducing XORs

Optimization Metric $\# \oplus(-)$: the number of XORs.

$$
\begin{aligned}
& P \quad \# \oplus=8 \\
& v_{1} \leftarrow a \oplus b ; \\
& v_{2} \leftarrow a \oplus b \oplus c ; \\
& v_{3} \leftarrow a \oplus b \oplus c \oplus d ; \\
& v_{4} \leftarrow b \oplus c \oplus d ; \\
& \\
& \text { return }\left(v_{1}, v_{2}, v_{3}, v_{4}\right)
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& Q \\
& v_{1} \leftarrow a \oplus b ; \\
& v_{2} \leftarrow v_{1} \oplus c ; \\
& v_{3} \leftarrow v_{2} \oplus d ; \\
&
\end{aligned}
$$

XOR Optimization: Reducing XORs

Optimization Metric $\# \oplus(-)$: the number of XORs.

$$
\begin{aligned}
& P \quad \# \oplus=8 \\
& v_{1} \leftarrow a \oplus b \\
& v_{2} \leftarrow a \oplus b \oplus c \\
& v_{3} \leftarrow a \oplus b \oplus c \oplus d \\
& v_{4} \leftarrow b \oplus c \oplus d ; \\
& \text { return }\left(v_{1}, v_{2}, v_{3}, v_{4}\right)
\end{aligned}
$$

XOR Optimization: Reducing XORs

Optimization Metric $\# \oplus(-)$: the number of XORs.

$$
\begin{aligned}
& \begin{array}{l}
P \#_{\oplus}=8 \\
v_{1} \leftarrow a \oplus b ;
\end{array} \frac{Q \quad \# \oplus=4}{v_{1} \leftarrow a \oplus b ;} \\
& v_{2} \leftarrow a \oplus b \oplus c ; \quad v_{2} \leftarrow v_{1} \oplus c ; \\
& v_{3} \leftarrow a \oplus b \oplus c \oplus d ; \\
& \Longrightarrow \\
& v_{3} \leftarrow v_{2} \oplus d ; \\
& v_{4} \leftarrow b \oplus c \oplus d ; \\
& \operatorname{return}\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \\
& v_{4} \leftarrow v_{3} \oplus a ; \\
& \because(a \oplus b \oplus c \oplus d) \oplus a=b \oplus c \oplus d . \\
& \text { return }\left(v_{1}, v_{2}, v_{3}, v_{4}\right)
\end{aligned}
$$

- P and Q are equivalent: $\llbracket P \rrbracket=\llbracket Q \rrbracket$.
- Intuitively, $Q\left(\#_{\oplus}(Q)=4\right)$ runs faster than $P\left(\#_{\oplus}(P)=8\right)$.

XOR Optimization: Reducing XORs

Optimization Metric $\# \oplus(-)$: the number of XORs.

$$
\begin{aligned}
& P \quad \# \oplus=8 \\
& v_{1} \leftarrow a \oplus b ; \\
& v_{2} \leftarrow a \oplus b \oplus c ; \\
& v_{3} \leftarrow a \oplus b \oplus c \oplus d ; \\
& v_{4} \leftarrow b \oplus c \oplus d ; \\
& \\
& \text { return }\left(v_{1}, v_{2}, v_{3}, v_{4}\right)
\end{aligned} \Rightarrow \quad \begin{aligned}
& \frac{Q \oplus \oplus}{} \quad \Rightarrow \quad \begin{array}{l}
v_{1} \leftarrow a \oplus b ; \\
v_{2} \leftarrow v_{1} \oplus c ; \\
v_{3} \leftarrow v_{2} \oplus d ; \\
v_{4} \leftarrow v_{3} \oplus a ; \\
\because(a \oplus b \oplus c \oplus c \\
\text { return }\left(v_{1}, v_{2},\right.
\end{array}
\end{aligned}
$$

- P and Q are equivalent: $\llbracket P \rrbracket=\llbracket Q \rrbracket$.
- Intuitively, $Q\left(\#_{\oplus}(Q)=4\right)$ runs faster than $P\left(\#_{\oplus}(P)=8\right)$.

Question. For a given SLP P, can we quickly find the most efficient equivalent SLP Q ?

XOR Optimization: Reducing XORs

Optimization Metric $\# \oplus(-)$: the number of XORs.

$$
\begin{array}{ll}
P \quad \# \oplus=8 \\
v_{1} \leftarrow a \oplus b ; \\
v_{2} \leftarrow a \oplus b \oplus c ; \\
v_{3} \leftarrow a \oplus b \oplus c \oplus d ; \\
v_{4} \leftarrow b \oplus c \oplus d ; \\
& \Longrightarrow
\end{array} \quad \begin{aligned}
& Q \quad \# \oplus=4 \\
& \text { return }\left(v_{1}, v_{2}, v_{3}, v_{4}\right)
\end{aligned} \quad \begin{aligned}
& v_{1} \leftarrow a \oplus b ; \\
& v_{2} \leftarrow v_{1} \oplus c ; \\
& v_{3} \leftarrow v_{2} \oplus d ; \\
& v_{4} \leftarrow v_{3} \oplus a ; \\
& \\
& \\
& \\
& \\
& \text { return }\left(v_{1}, v_{2}, v_{3}, v_{4}\right)
\end{aligned}
$$

- P and Q are equivalent: $\llbracket P \rrbracket=\llbracket Q \rrbracket$.
- Intuitively, $Q\left(\#_{\oplus}(Q)=4\right)$ runs faster than $P\left(\#_{\oplus}(P)=8\right)$.

Theorem (Boyar+ 2013)

Unless $\mathbf{P}=\mathbf{N P}$, for a given SLP P , in polynomial time, we cannot find Q such that $\llbracket P \rrbracket=\llbracket Q \rrbracket$ and minimizes $\#(Q)$.

Our Heuristic: Grammar Compression Algorithm RePAir

Originally, RePAir is an algorithm to compress context-free grammars. We use it identifying SLPs as commutative CFGs.

- Larsson \& Moffat. 1999. Offline dictionary-based compression
- Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

Our Heuristic: Grammar Compression Algorithm RePair

Originally, REPAIR is an algorithm to compress context-free grammars. We use it identifying SLPs as commutative CFGs.

- Larsson \& Moffat. 1999. Offline dictionary-based compression
- Paar. 1997. Optimized arithmetic for Reed-Solomon encoders RePair $=$ Repeat Pair. The key operation is Pair:

$$
\begin{aligned}
& v_{1} \leftarrow a \oplus b ; \\
& t_{1} \leftarrow a \oplus c ; \\
& v_{2} \leftarrow a \oplus b \oplus c ; \\
& v_{3} \leftarrow a \oplus b \oplus c \oplus d ; \quad \xrightarrow{\operatorname{PAIR}(a, C)} \\
& v_{1} \leftarrow a \oplus b ; \\
& v_{2} \leftarrow t_{1} \oplus b ; \quad \# \oplus=7 \\
& v_{4} \leftarrow b \oplus c \oplus d ; \\
& v_{3} \leftarrow t_{1} \oplus b \oplus d ; \\
& \#{ }_{\oplus}=8 \\
& v_{4} \leftarrow b \oplus c \oplus d ;
\end{aligned}
$$

Our Heuristic: Grammar Compression Algorithm RePair

Originally, RePAir is an algorithm to compress context-free grammars. We use it identifying SLPs as commutative CFGs.

- Larsson \& Moffat. 1999. Offline dictionary-based compression
- Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

RePair $=$ Repeat Pair. The key operation is Pair:

$$
\begin{aligned}
& v_{1} \leftarrow a \oplus b ; \\
& v_{2} \leftarrow a \oplus b \oplus c ; \quad \operatorname{PARR}(a, c) \quad v_{1} \leftarrow a \oplus b ; \\
& v_{3} \leftarrow a \oplus b \oplus c \oplus d ; \xrightarrow{\operatorname{PAIr}(a, C)} \quad v_{2} \leftarrow t_{1} \oplus b ; \quad \# \oplus=7 \\
& v_{4} \leftarrow b \oplus c \oplus d ; \quad v_{3} \leftarrow t_{1} \oplus b \oplus d ; \\
& \# \oplus=8 \quad v_{4} \leftarrow b \oplus c \oplus d ;
\end{aligned}
$$

How do we choose a pair of terms to do pairing?

Our Heuristic: Grammar Compression Algorithm RePair

Originally, REPAIR is an algorithm to compress context-free grammars. We use it identifying SLPs as commutative CFGs.

- Larsson \& Moffat. 1999. Offline dictionary-based compression
- Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

RePair $=$ Repeat Pair. The key operation is Pair:

$$
\begin{aligned}
& v_{1} \leftarrow a \oplus b ; \\
& t_{1} \leftarrow a \oplus c ; \\
& v_{2} \leftarrow a \oplus b \oplus c ; \quad \operatorname{Parr}(a, c) \quad v_{1} \leftarrow a \oplus b ; \\
& v_{3} \leftarrow a \oplus b \oplus c \oplus d ; \stackrel{\text { PAIR }(u, c)}{l} v_{2} \leftarrow t_{1} \oplus b ; \quad \# \oplus=7 \\
& v_{4} \leftarrow b \oplus c \oplus d ; \quad v_{3} \leftarrow t_{1} \oplus b \oplus d ; \\
& \# \oplus=8 \quad v_{4} \leftarrow b \oplus c \oplus d ;
\end{aligned}
$$

How do we choose a pair of terms to do pairing? Greedy.

$$
\begin{aligned}
& v_{1} \leftarrow a \oplus b ; \\
& v_{2} \leftarrow a \oplus b \oplus c ; \\
& v_{3} \leftarrow a \oplus b \oplus c \oplus d ; \\
& v_{4} \leftarrow b \oplus c \oplus d ;
\end{aligned} \stackrel{\text { PAIR }(a, b),}{\xrightarrow{t_{1} \leftarrow a \oplus b ;}} \begin{aligned}
& v_{2} \leftarrow t_{1} \oplus c ; \\
& v_{3} \leftarrow t_{1} \oplus c \oplus d ; \\
& \\
& v_{4} \leftarrow b \oplus c \oplus d ;
\end{aligned}
$$

Our Heuristic: Grammar Compression Algorithm RePair

Originally, RePAir is an algorithm to compress context-free grammars. We use it identifying SLPs as commutative CFGs.

- Larsson \& Moffat. 1999. Offline dictionary-based compression
- Paar. 1997. Optimized arithmetic for Reed-Solomon encoders RePair $=$ Repeat Pair. The key operation is Pair:

$$
\begin{aligned}
& v_{1} \leftarrow a \oplus b ; \quad t_{1} \leftarrow a \oplus c ; \\
& v_{2} \leftarrow a \oplus b \oplus c ; \quad \quad \operatorname{PAR}(a, C) \quad v_{1} \leftarrow a \oplus b ; \\
& v_{3} \leftarrow a \oplus b \oplus c \oplus d ; \xrightarrow{\operatorname{PAIR}(a, C)} v_{2} \leftarrow t_{1} \oplus b ; \quad \# \oplus=7 \\
& v_{4} \leftarrow b \oplus c \oplus d ; \quad v_{3} \leftarrow t_{1} \oplus b \oplus d ; \\
& \#{ }_{\oplus}=8 \quad v_{4} \leftarrow b \oplus c \oplus d ;
\end{aligned}
$$

Our Heuristic: Grammar Compression Algorithm RePair

Originally, REPAIR is an algorithm to compress context-free grammars. We use it identifying SLPs as commutative CFGs.

- Larsson \& Moffat. 1999. Offline dictionary-based compression
- Paar. 1997. Optimized arithmetic for Reed-Solomon encoders RePair $=$ Repeat Pair. The key operation is Pair:

$$
\begin{aligned}
& v_{1} \leftarrow a \oplus b ; \quad \quad t_{1} \leftarrow a \oplus c ; \\
& v_{2} \leftarrow a \oplus b \oplus c ; \quad \operatorname{Pair}(a, C) \quad v_{1} \leftarrow a \oplus b ; \\
& v_{3} \leftarrow a \oplus b \oplus c \oplus d ; \xrightarrow{\operatorname{PAIR}(a, C)} v_{2} \leftarrow t_{1} \oplus b ; \quad \# \oplus=7 \\
& v_{4} \leftarrow b \oplus c \oplus d ; \quad v_{3} \leftarrow t_{1} \oplus b \oplus d ; \\
& \#{ }_{\oplus}=8 \quad v_{4} \leftarrow b \oplus c \oplus d ;
\end{aligned}
$$

The commutative version of REPAIR accommodates

$$
\text { Commutativity : } x \oplus y=y \oplus x, \text { Associativity : }(x \oplus y) \oplus z=x \oplus(y \oplus z) .
$$

In the paper, we extend it to XorRePair by accommodating
Cancellativity: $x \oplus x \oplus y=y$.

Memory Access Optimization: MultiSLP

Optimization Metric: $\#$ mem $(-)=$ the number of memory access.
Quiz: How many times will this program access memory?

$$
\# \mathrm{mem}(v \leftarrow A \oplus B \oplus C \oplus D)=?
$$

Memory Access Optimization: MultiSLP

Optimization Metric: $\# \operatorname{mem}(-)=$ the number of memory access.
Quiz: How many times will this program access memory?

$$
\# \operatorname{mem}(v \leftarrow A \oplus B \oplus C \oplus D)=9
$$

because each \oplus issues two read and one write:

$$
t_{1} \leftarrow A \oplus B ; \quad t_{2} \leftarrow t_{1} \oplus C ; \quad v \leftarrow t_{2} \oplus D ;
$$

Memory Access Optimization: MultiSLP

Optimization Metric: $\# \operatorname{mem}(-)=$ the number of memory access.
Quiz: How many times will this program access memory?

$$
\# \text { mem }(v \leftarrow A \oplus B \oplus C \oplus D)=9
$$

because each \oplus issues two read and one write:

$$
t_{1} \leftarrow A \oplus B ; \quad t_{2} \leftarrow t_{1} \oplus C ; \quad v \leftarrow t_{2} \oplus D ;
$$

t_{1} and t_{2} are wasteful: they are released immediately after allocated.
To reduce such wastefulness, we extend SLP to MultiSLP, which allows n-arity XORs.

Memory Access Optimization: MultiSLP

Optimization Metric: $\# \operatorname{mem}(-)=$ the number of memory access.
Quiz: How many times will this program access memory?

$$
\# \text { mem }(v \leftarrow A \oplus B \oplus C \oplus D)=9
$$

because each \oplus issues two read and one write:

$$
t_{1} \leftarrow A \oplus B ; \quad t_{2} \leftarrow t_{1} \oplus C ; \quad v \leftarrow t_{2} \oplus D ;
$$

On MultiSLP, we can

$$
v \leftarrow \oplus_{4}(A, B, C, D) ;
$$

Thus, we have $\#_{\text {mem }}=5$.

```
\oplus}4(A,B,C,D: [byte]) 
    var v = Array::new(A.len);
    for i in [0..A.len):
        byte r = A[i] ~ B[i]
        r = r ^ C[i];
        v[i]=r^D[i];
    return v;
}
```


New Metric and Memory Optimization Problem

From a given P, can we quickly ($=$ in polynomial time) find an equivalent and most memory efficient Q w.r.t. \#mem ?

$$
P: \begin{array}{r}
v_{1} \leftarrow a \oplus b \oplus c \oplus d \oplus e \\
v_{2} \leftarrow a \oplus b \oplus c \oplus d \oplus f \\
\quad{ }_{\text {mem }}(P)=24
\end{array}
$$

New Metric and Memory Optimization Problem

From a given P, can we quickly ($=$ in polynomial time) find an equivalent and most memory efficient Q w.r.t. \#mem ?

$$
P: \begin{aligned}
& v_{1} \leftarrow a \oplus b \oplus c \oplus d \oplus e ; \\
& v_{2} \leftarrow a \oplus b \oplus c \oplus d \oplus f ; \\
& \# \text { mem }(P)=24
\end{aligned} \quad \Longrightarrow Q: \begin{aligned}
& t \leftarrow \oplus_{4}(a, b, c, d) ; \\
& v_{1} \leftarrow t \oplus e ; \\
& v_{2} \leftarrow t \oplus f ; \\
& \# \text { mem }(Q)=11
\end{aligned}
$$

New Metric and Memory Optimization Problem

From a given P, can we quickly ($=$ in polynomial time) find an equivalent and most memory efficient Q w.r.t. \#mem ?

$$
P: \begin{aligned}
& v_{1} \leftarrow a \oplus b \oplus c \oplus d \oplus e ; \\
& v_{2} \leftarrow a \oplus b \oplus c \oplus d \oplus f ; \\
& \# \text { mem }(P)=24
\end{aligned} \quad \Longrightarrow Q: \begin{aligned}
& t \leftarrow \oplus_{4}(a, b, c, d) ; \\
& v_{1} \leftarrow t \oplus e ; \\
& v_{2} \leftarrow t \oplus f ; \\
& \\
& \# \text { mem }(Q)=11
\end{aligned}
$$

Unfortunately, we showed the following intractability result:
Theorem (Our NEW theoretical result)
Unless $\mathbf{P}=\mathbf{N P}$, for a given SLP P, in polynomial time, we cannot find Q that $\llbracket P \rrbracket=\llbracket Q \rrbracket$ and minimizes $\#_{\text {mem }}(Q)$.

Our Heuristic: XOR Fusion
We fuse XORs when the following holds:

$$
\begin{aligned}
\alpha & \leftarrow \oplus\left(x_{1}, \ldots, x_{n}\right) ; \\
& \vdots \\
\beta & \leftarrow \oplus\left(y_{1}, \ldots, \alpha, \ldots, y_{m}\right)
\end{aligned} \stackrel{\text { fuse }}{ } \beta \leftarrow \oplus\left(y_{1}, \ldots, x_{1}, \ldots, x_{n}, \ldots, y_{m}\right)
$$

$\star \alpha$ appears once in the program

Our Heuristic: XOR Fusion

We fuse XORs when the following holds:
$\alpha \leftarrow \oplus\left(x_{1}, \ldots, x_{n}\right) ;$
\vdots
$\vdots$$\left(y_{1}, \ldots, \alpha, \ldots, y_{m}\right) \stackrel{\text { fuse }}{ } \beta \leftarrow \oplus\left(y_{1}, \ldots, x_{1}, \ldots, x_{n}, \ldots, y_{m}\right)$
$\star \alpha$ appears once in the program

Our Heuristic: XOR Fusion
We fuse XORs when the following holds:

$$
\begin{aligned}
& \alpha \leftarrow \oplus\left(x_{1}, \ldots, x_{n}\right) ; \\
& \quad \vdots \\
& \beta \leftarrow \oplus\left(y_{1}, \ldots, \alpha, \ldots, y_{m}\right) \stackrel{\text { fuse }}{\Longrightarrow} \beta \leftarrow \oplus\left(y_{1}, \ldots, x_{1}, \ldots, x_{n}, \ldots, y_{m}\right)
\end{aligned}
$$

$\star \alpha$ appears once in the program

$$
\begin{aligned}
& \text { Example. } \\
& \begin{aligned}
& v_{1} \leftarrow a \oplus b \oplus c \oplus d \oplus e ; \\
& v_{2} \leftarrow a \oplus b \oplus c \oplus d \oplus f ; \stackrel{\text { RePAIR }}{ } \\
& \#_{\text {mem }}(24)
\end{aligned} \\
& t_{1} \leftarrow a \oplus b ; \\
& t_{2} \leftarrow t_{1} \oplus c ; \\
& t_{2} \leftarrow \oplus_{3}(a, b, c) ; \\
& \begin{array}{l}
t_{2} \leftarrow t_{1} \oplus c ; \\
t_{3} \leftarrow t_{2} \oplus d ; \quad \text { fuse }\left(t_{1}\right)
\end{array} \quad t_{3} \leftarrow t_{2} \oplus d ; \\
& \begin{array}{l}
t_{3} \leftarrow t_{2} \oplus a ; \\
v_{1} \leftarrow t_{3} \oplus e ;
\end{array} \xrightarrow{\text { fuse }\left(t_{1}\right)} v_{1} \leftarrow t_{3} \oplus e ; \\
& v_{2} \leftarrow t_{3} \oplus f ; \\
& v_{2} \leftarrow t_{3} \oplus f ; \\
& \text { \#mem (13) } \\
& t_{3} \leftarrow \oplus_{4}(a, b, c, d) ; \\
& \#_{\text {mem }}(15) \\
& v_{1} \leftarrow t_{3} \oplus e ; \\
& v_{2} \leftarrow t_{3} \oplus f ; \\
& \#_{\text {mem }}(11)
\end{aligned}
$$

Our Heuristic: XOR Fusion
We fuse XORs when the following holds:

$$
\begin{aligned}
& \alpha \leftarrow \oplus\left(x_{1}, \ldots, x_{n}\right) ; \\
& \quad \vdots \\
& \beta \leftarrow \oplus\left(y_{1}, \ldots, \alpha, \ldots, y_{m}\right) \stackrel{\text { fuse }}{\Longrightarrow} \beta \leftarrow \oplus\left(y_{1}, \ldots, x_{1}, \ldots, x_{n}, \ldots, y_{m}\right)
\end{aligned}
$$

$\star \alpha$ appears once in the program

$$
\begin{aligned}
& \text { Example. } \\
& \begin{array}{c}
v_{1} \leftarrow a \oplus b \oplus c \oplus d \oplus e ; \\
v_{2} \leftarrow a \oplus b \oplus c \oplus d \oplus f ; \stackrel{\text { RePAIR }}{ } \\
\#_{\text {mem }}(24)
\end{array} \\
& t_{1} \leftarrow a \oplus b ; \\
& t_{2} \leftarrow t_{1} \oplus c ; \\
& t_{2} \leftarrow \oplus_{3}(a, b, c) ; \\
& t_{3} \leftarrow t_{2} \oplus d ; \quad \text { fuse }\left(t_{1}\right) \quad t_{3} \leftarrow t_{2} \oplus d ; \\
& v_{1} \leftarrow t_{3} \oplus e ; \\
& v_{2} \leftarrow t_{3} \oplus f ; \\
& v_{2} \leftarrow t_{3} \oplus f ; \\
& \text { \#mem (13) } \\
& t_{3} \leftarrow \oplus_{4}(a, b, c, d) ; \\
& \xrightarrow{\text { fuse }\left(t_{2}\right)} v_{1} \leftarrow t_{3} \oplus e ; \\
& v_{2} \leftarrow t_{3} \oplus f ; \\
& \text { \#mem (15) } \\
& v_{1} \leftarrow \oplus_{5}(a, b, c, d, e) ; \\
& v_{2} \leftarrow \oplus_{5}(a, b, c, d, f) ; \\
& \text { \#mem(11) }
\end{aligned}
$$

Cache Optimization: SLP + LRU Cache

Metric $\#_{\mathrm{I} / \mathrm{O}}(K,-)$:
the total number of I/O transfers between memory andf cache of K-capacity.

Cache Optimization: SLP + LRU Cache

Metric $\#_{\mathrm{I} / \mathrm{O}}(K,)_{-}$: the total number of I / O transfers between memory andf cache of K-capacity.
We have three kinds of operations for cache:
> $\mathcal{H}(x)$: Cache Hit for an element $x . \#_{1 / \mathrm{O}}=0$.
$>\mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\#_{\mathrm{I} / \mathrm{O}}=2$.
> $\mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{\mathrm{I} / \mathrm{O}}=1$.

Cache Optimization: SLP + LRU Cache

Metric $\#_{\mathrm{I} / \mathrm{O}}(K,)_{-}$: the total number of I / O transfers between memory andf cache of K-capacity.
We have three kinds of operations for cache:

- $\mathcal{H}(x)$: Cache Hit for an element $x . \#_{1 / 0}=0$.
$>\mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\#_{\mathrm{I} / \mathrm{O}}=2$.
- $\mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{\mathrm{I} / \mathrm{O}}=1$.

Example: Calculate $\#_{\mathrm{I} / \mathrm{O}}(4, P)$ for the following example SLP P :

```
v1}\leftarrowA\oplusB;\quad\mp@subsup{*}{1}{}\mp@subsup{*}{2}{}\mp@subsup{*}{3}{}\mp@subsup{*}{4}{
v2}\leftarrow\oplus(E,D,A)
v
v4}\leftarrow\mp@subsup{v}{1}{}\oplusC
return (v2, v3, v4})
```


Cache Optimization: SLP + LRU Cache

Metric $\#_{\mathrm{I} / \mathrm{O}}(K,)_{-}$: the total number of I / O transfers between memory andf cache of K-capacity.
We have three kinds of operations for cache:

- $\mathcal{H}(x)$: Cache Hit for an element $x . \#_{1 / 0}=0$.
$>\mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\# \mathrm{I} / \mathrm{o}=2$.
- $\mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{\mathrm{I} / \mathrm{O}}=1$.

Example: Calculate $\#_{\mathrm{I} / \mathrm{O}}(4, P)$ for the following example SLP P :

```
\[
v_{1} \leftarrow A \oplus B ; \quad *_{1} *_{2} *_{3} *_{4} \xrightarrow[2]{\mathcal{R}(A)} *_{2} *_{3} *_{4} A
\]
\[
v_{2} \leftarrow \oplus(E, D, A) ;
\]
\[
v_{3} \leftarrow v_{1} \oplus E ;
\]
\[
v_{4} \leftarrow v_{1} \oplus C ;
\]
\[
\text { return }\left(v_{2}, v_{3}, v_{4}\right) ;
\]
```


Cache Optimization: SLP + LRU Cache

Metric $\#_{\mathrm{I} / \mathrm{O}}(K,)_{-}$: the total number of I / O transfers between memory andf cache of K-capacity.
We have three kinds of operations for cache:

- $\mathcal{H}(x)$: Cache Hit for an element $x . \#_{1 / 0}=0$.
$>\mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\# \mathrm{I} / \mathrm{o}=2$.
- $\mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{\mathrm{I} / \mathrm{O}}=1$.

Example: Calculate $\#_{\mathrm{I} / \mathrm{O}}(4, P)$ for the following example SLP P :
$v_{1} \leftarrow A \oplus B ; \quad *_{1} *_{2} *_{3} *_{4} \xrightarrow[2]{\mathcal{R}(A)} *_{2} *_{3} *_{4} A \xrightarrow[2]{\mathcal{R}(B)} *_{3} *_{4} A B$
$v_{2} \leftarrow \oplus(E, D, A) ;$
$v_{3} \leftarrow v_{1} \oplus E ;$
$v_{4} \leftarrow v_{1} \oplus C ;$
return $\left(v_{2}, v_{3}, v_{4}\right) ;$

Cache Optimization: SLP + LRU Cache

Metric $\#_{\mathrm{I} / \mathrm{O}}\left(K,{ }_{-}\right)$: the total number of I / O transfers between memory andf cache of K-capacity.
We have three kinds of operations for cache:

- $\mathcal{H}(x)$: Cache Hit for an element $x . \#_{1 / 0}=0$.
$>\mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\#_{\mathrm{I} / \mathrm{O}}=2$.
- $\mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{\mathrm{I} / \mathrm{O}}=1$.

Example: Calculate $\#_{\mathrm{I} / \mathrm{O}}(4, P)$ for the following example SLP P :

$$
\begin{array}{ll}
v_{1} \leftarrow A \oplus B ; & *_{1} *_{2} *_{3} * \\
v_{2} \leftarrow \oplus(E, D, A) ; & *_{4} A B v_{1} \\
v_{3} \leftarrow v_{1} \oplus E ; & \\
v_{4} \leftarrow v_{1} \oplus C ; & \\
\text { return }\left(v_{2}, v_{3}, v_{4}\right) ; &
\end{array}
$$

Cache Optimization: SLP + LRU Cache

Metric $\#_{\mathrm{I} / \mathrm{O}}(K,)_{-}$: the total number of I / O transfers between memory andf cache of K-capacity.
We have three kinds of operations for cache:

- $\mathcal{H}(x)$: Cache Hit for an element $x . \#_{1 / 0}=0$.
- $\mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\#_{I / O}=2$.
- $\mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{\mathrm{I} / \mathrm{O}}=1$.

Example: Calculate $\#_{I / O}(4, P)$ for the following example SLP P:

$$
\begin{array}{ll}
v_{1} \leftarrow A \oplus B ; & *_{1} *_{2} *_{3} *_{4} \xrightarrow[2]{\mathcal{R}(A)} *_{2} *_{3} *_{4} A \xrightarrow[2]{\mathcal{R}(B)} *_{3} *_{4} A B \xrightarrow{\mathcal{W}\left(v_{1}\right)} \\
v_{2} \leftarrow \oplus(E, D, A) ; & *_{4} A B v_{1} \xrightarrow[2]{\mathcal{R}(E)} A B v_{1} E \xrightarrow[2]{\mathcal{R}(D)} B v_{1} E D \xrightarrow[2]{\mathcal{R}(A)} v_{1} E D A \xrightarrow[1]{\mathcal{W}\left(v_{2}\right)} \\
v_{3} \leftarrow v_{1} \oplus E ; & E D A v_{2} \xrightarrow[2]{\mathcal{R}\left(v_{1}\right)} D A v_{2} v_{1} \xrightarrow[2]{\mathcal{R}(E)} A v_{2} v_{1} E \xrightarrow[1]{\mathcal{W}\left(v_{3}\right)} \\
v_{4} \leftarrow v_{1} \oplus C ; & v_{2} v_{1} E v_{3} \xrightarrow[0]{\mathcal{H}\left(v_{1}\right)} v_{2} E v_{3} v_{1} \frac{\mathcal{R}(C)}{2} A v_{3} v_{1} C \xrightarrow[1]{\mathcal{W}\left(v_{4}\right)} \\
\text { return }\left(v_{2}, v_{3}, v_{4}\right) ; & v_{3} v_{1} C v_{4} \xrightarrow{0} \# \mathrm{I} / \mathrm{O}(4, P)=20 .
\end{array}
$$

First approach: Register Assignment

Idea: Reducing the number of variables can relax the pressure of cache, and thus may reduce $\#_{\mathrm{I} / \mathrm{o}}$.

We do Recycling variables by Register assignment.

First approach: Register Assignment

Idea: Reducing the number of variables can relax the pressure of cache, and thus may reduce $\#_{\mathrm{I} / \mathrm{O}}$.

We do Recycling variables by Register assignment.

First approach: Register Assignment

Idea: Reducing the number of variables can relax the pressure of cache, and thus may reduce $\#_{\mathrm{I} / \mathrm{O}}$.

We do Recycling variables by Register assignment.

$$
\begin{aligned}
& \xrightarrow[0]{\mathcal{R}\left(v_{1}\right)} v_{2} E v_{3} v_{1} \xrightarrow[2]{\mathcal{R}(C)} E v_{3} v_{1} C \xrightarrow[1]{\mathcal{W}\left(v_{4}\right)} v_{3} v_{1} C v_{4} \\
& \Downarrow \\
& \xrightarrow[0]{\mathcal{R}\left(v_{1}\right)} v_{2} E v_{3} v_{1} \xrightarrow[2]{\mathcal{R}(C)} E v_{3} v_{1} C \xrightarrow[0]{\mathcal{W}\left(v_{1}\right)} E v_{3} C v_{1}
\end{aligned}
$$

It works, but the effect is so limited.

Next Approach: Reordering Statements and Arguments

No side effects on SLPs; thus, we can reorder statements and arguments.

$$
\begin{array}{lcll}
& \#_{1 / \mathrm{O}} & & \#_{\mathrm{I} / \mathrm{O}} \\
v_{1} \leftarrow A \oplus B ; & {[5]} \\
v_{2} \leftarrow \oplus(E, D, A) ; & {[7]} \\
v_{3} \leftarrow v_{1} \oplus E ; & {[5]} \\
v_{4} \leftarrow v_{1} \oplus C ; & {[3]} \\
\text { return }\left(v_{2}, v_{3}, v_{4}\right) ; & 20 & & v_{2} \leftarrow \oplus(A, D, E) ;
\end{array}[5]
$$

Next Approach: Reordering Statements and Arguments

No side effects on SLPs; thus, we can reorder statements and arguments.

\[

\]

Using Pebble Game, we can integrate $\left\{\begin{array}{l}\text { Recycling Variables and } \\ \text { Reordering }\end{array}\right.$

* R. Sethi, 1975, Complete register allocation problems.

Next Approach: Reordering Statements and Arguments

No side effects on SLPs; thus, we can reorder statements and arguments.

\[

\]

Using Pebble Game, we can integrate $\left\{\begin{array}{l}\text { Recycling Variables and } \\ \text { Reordering }\end{array}\right.$

* R. Sethi, 1975, Complete register allocation problems.
- We play the pebble game on DAGs or abstract syntax graphs.
- We aim to put pebbles in return nodes.

Pebble Game \& Intractability of Optimization Problem

Playing Pebble Game $=$ Deciding Evaluation Order + Variable Recycling

Example: Evaluating strategy based on Depth-first-search

Pebble Game \& Intractability of Optimization Problem

Playing Pebble Game $=$ Deciding Evaluation Order + Variable Recycling

$v_{2}:$

Example: Evaluating strategy based on Depth-first-search

1. Choose v_{2} from unvisited roots: alphabetical small $v_{2} \prec v_{3} \prec v_{4}$.

Pebble Game \& Intractability of Optimization Problem

Playing Pebble Game $=$ Deciding Evaluation Order + Variable Recycling

$$
v_{2}: \quad \leftarrow \oplus(A, D, E)
$$

Example: Evaluating strategy based on Depth-first-search

1. Choose v_{2} from unvisited roots: alphabetical small $v_{2} \prec v_{3} \prec v_{4}$.
2. Evaluate the children of v_{2} in alphabetical order.

Pebble Game \& Intractability of Optimization Problem

Playing Pebble Game $=$ Deciding Evaluation Order + Variable Recycling

$$
v_{2}: \quad p_{1} \leftarrow \oplus(A, D, E)
$$

Example: Evaluating strategy based on Depth-first-search

1. Choose v_{2} from unvisited roots: alphabetical small $v_{2} \prec v_{3} \prec v_{4}$.
2. Evaluate the children of v_{2} in alphabetical order.
3. Put a pebble p_{1} on v_{2} to denote v_{2} is visited.

Pebble Game \& Intractability of Optimization Problem

Playing Pebble Game $=$ Deciding Evaluation Order + Variable Recycling

$$
v_{2}: \quad p_{1} \leftarrow \oplus(A, D, E)
$$

$$
v_{3}: \quad \leftarrow E \oplus
$$

Example: Evaluating strategy based on Depth-first-search

1. Choose v_{2} from unvisited roots: alphabetical small $v_{2} \prec v_{3} \prec v_{4}$.
2. Evaluate the children of v_{2} in alphabetical order.
3. Put a pebble p_{1} on v_{2} to denote v_{2} is visited.
4. Choose v_{3} from 2 unvisited roots, and first visit E.

Pebble Game \& Intractability of Optimization Problem

Playing Pebble Game $=$ Deciding Evaluation Order + Variable Recycling

$$
\begin{array}{lc}
v_{2}: & p_{1} \leftarrow \oplus(A, D, E) \\
v_{1}: & p_{2} \leftarrow A \oplus B \\
v_{3}: & \leftarrow E \oplus
\end{array}
$$

Example: Evaluating strategy based on Depth-first-search

1. Choose v_{2} from unvisited roots: alphabetical small $v_{2} \prec v_{3} \prec v_{4}$.
2. Evaluate the children of v_{2} in alphabetical order.
3. Put a pebble p_{1} on v_{2} to denote v_{2} is visited.
4. Choose v_{3} from 2 unvisited roots, and first visit E.
5. Visit the unvisited child v_{1} of v_{3}, evaluate, and pebble p_{2}

Pebble Game \& Intractability of Optimization Problem

Playing Pebble Game $=$ Deciding Evaluation Order + Variable Recycling

$$
\begin{array}{ll}
v_{2}: & p_{1} \leftarrow \oplus(A, D, E) ; \\
v_{1}: & p_{2} \leftarrow A \oplus B ; \\
v_{3}: & p_{3} \leftarrow E \oplus p_{2} ;
\end{array}
$$

Example: Evaluating strategy based on Depth-first-search

1. Choose v_{2} from unvisited roots: alphabetical small $v_{2} \prec v_{3} \prec v_{4}$.
2. Evaluate the children of v_{2} in alphabetical order.
3. Put a pebble p_{1} on v_{2} to denote v_{2} is visited.
4. Choose v_{3} from 2 unvisited roots, and first visit E.
5. Visit the unvisited child v_{1} of v_{3}, evaluate, and pebble p_{2}
6. Back to v_{3} and pebble p_{3}

Pebble Game \& Intractability of Optimization Problem

Playing Pebble Game $=$ Deciding Evaluation Order + Variable Recycling

$$
\begin{array}{ll}
v_{2}: & p_{1} \leftarrow \oplus(A, D, E) \\
v_{1}: & p_{2} \leftarrow A \oplus B \\
v_{3}: & p_{3} \leftarrow E \oplus p_{2} \\
v_{4}: & p_{2} \leftarrow C \oplus p_{2}
\end{array}
$$

Example: Evaluating strategy based on Depth-first-search

1. Choose v_{2} from unvisited roots: alphabetical small $v_{2} \prec v_{3} \prec v_{4}$.
2. Evaluate the children of v_{2} in alphabetical order.
3. Put a pebble p_{1} on v_{2} to denote v_{2} is visited.
4. Choose v_{3} from 2 unvisited roots, and first visit E.
5. Visit the unvisited child v_{1} of v_{3}, evaluate, and pebble p_{2}
6. Back to v_{3} and pebble p_{3}
7. Finally, we compute v_{4} with moving/recycling pebble p_{2}.

Pebble Game \& Intractability of Optimization Problem

Playing Pebble Game $=$ Deciding Evaluation Order + Variable Recycling

$$
\begin{array}{lll}
v_{2}: & p_{1} \leftarrow \oplus(A, D, E) ; & {[7]} \\
v_{1}: & p_{2} \leftarrow A \oplus B ; & {[3]} \\
v_{3}: & p_{3} \leftarrow E \oplus p_{2} ; & {[3]} \\
v_{4}: & p_{2} \leftarrow C \oplus p_{2} ; & {[2]} \\
& \text { return }\left(p_{1}, p_{3}, p_{2}\right) ; & 15
\end{array}
$$

Example: Evaluating strategy based on Depth-first-search

Can we find the best reordering and pebbling in polynomial time?
Theorem (Sethi 1975, Papp \& Wattenhofer 2020)
Unless $\mathbf{P}=\mathbf{N P}$, for a given P, in polynomial time, we cannot find a Q that $\llbracket P \rrbracket=\llbracket \overline{Q \rrbracket \text { and minimizes }} \#_{1 / O}(Q)$.

We use DFS-based strategy as above in our evaluation.

Evaluation

Data Set \& Evaluation Environment

We consider $\operatorname{RS}(10,4)$ as an example data set.

- We have 1-encoding SLP $P_{\text {enc. }}$.
- We have $\binom{14}{4}=1001$ decoding SLPs.

We used two environments in my paper:

name	CPU	Clock	Core	RAM
intel	$i 7-7567 \mathrm{U}$	4.0 GHz	2	DDR3-2133 16GB
amd	Ryzen 2600	3.9 GHz	6	DDR4-2666 48GB

In a distributed computation, our test environments correspond to single nodes.

L1 cache specification: | Size | Associativity | Line Size |
| :---: | :---: | :---: |
| $32 \mathrm{~KB} /$ core | 8 -way | 64 bytes |

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000 -runs for 10 MB randomly generated data

Metric	$\begin{aligned} & \text { Base } \\ & P_{\text {enc }} \end{aligned}$	RePair	$\text { RePair }+$ Fuse	RePair + Fuse + Pebbling
\# \oplus	755			
\#mem	2265			

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000 -runs for 10 MB randomly generated data

Metric	Base $P_{\text {enc }}$	RePair	RePair + Fuse	RePair + Fuse + Pebbling
\# ${ }^{\text {e }}$	755			
\#mem	2265			
$\mathcal{B}=512:{ }^{\#} / \mathrm{O}(\mathrm{K}=64)$	570			
$\mathcal{B}=1 \mathrm{~K}:{ }^{\#} / \mathrm{O}(K=32)$	1262			
$\mathcal{B}=2 \mathrm{~K}:{ }^{\#} / \mathrm{O}(K=16)$	1598			

Improvements by heuristics for the encoding SLP on Intel PC
Throughput is Avg. of 1000 -runs for 10 MB randomly generated data \mathcal{B}-Byte Blocking for Cache Efficiency

```
for }i\leftarrow0..(A.len / B) 
    }
return(v1, v2);
```

 \(v_{1}=\operatorname{xor}(A, B) ; \quad v_{1}^{[i]}=\operatorname{xor}\left(A^{[i]}, B^{[i]}\right)\);
 \(v_{2}=\operatorname{xor}\left(v_{1}, C, D\right) ; \quad v_{2}^{[i]}=\operatorname{xor}\left(v_{1}^{[i]}, C^{[i]}, D^{[i]}\right)\);
 \(\mathcal{B}=\)
 return \(\left(v_{1}, v_{2}\right)\);
 where $A^{[i]}$ is the i-th \mathcal{B}-bytes block.

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000 -runs for 10 MB randomly generated data

Improvements by heuristics for the encoding SLP on Intel PC
Throughput is Avg. of $1000-$ runs for 10 MB randomly generated data

	Metric	Base $P_{\text {enc }}$	Why smaller blocks are slower
	\# \oplus	755	than the large one?
	\#mem	2265	Pros: Smaller blocks,
$\mathcal{B}=512$:	$\#_{I / O}(K=64)$ Throughput (GB/s)	$\begin{aligned} & 570 \\ & 3.10 \end{aligned}$	- More cache-able blocks $\frac{32 K}{B}$. Cons: Smaller blocks,
$\mathcal{B}=1 \mathrm{~K}:$	$\#_{1 / O}(K=32)$ Throughput (GB/s)	$\begin{aligned} & 1262 \\ & 4.03 \end{aligned}$	cache identically is more difficult.
$\mathcal{B}=2 \mathrm{~K}$:	$\#_{1 / O}(K=16)$ Throughput (GB/s)	$\begin{aligned} & 1598 \\ & 4.45 \end{aligned}$	Latency penalty becomes totally large.

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000 -runs for 10 MB randomly generated data

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000 -runs for 10 MB randomly generated data

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000 -runs for 10 MB randomly generated data

	Metric	Base $P_{\text {enc }}$	RePair	RePair + Fuse	RePair + Fuse + Pebbling
	$\# \oplus$	755	385		
	\#mem	2265	1155		
$\mathcal{B}=512$:	\#ı/O(K=64)	570	1231		
	Throughput (GB/s)	3.10	4.18		
$\mathcal{B}=1 \mathrm{~K}:$	\#ı/O $(K=32)$	1262	1465		
	Throughput (GB/s)	4.03	4.36		
$\mathcal{B}=2 \mathrm{~K}:$	$\#_{\mathrm{I} / \mathrm{O}}(K=16)$	1598	1599		
	Throughput (GB/s)	4.45	4.86		

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000 -runs for 10 MB randomly generated data

	Metric	Base $P_{\text {enc }}$	RePair	RePair + Fuse	RePair + Fuse + Pebbling
$\mathcal{B}=512$	$\# \oplus$	755	385	N/A	
	\#mem	2265	1155	677	
	\#ı/O(K=64)	570	1231		
	Throughput (GB/s)	3.10	4.18		
$\mathcal{B}=1 \mathrm{~K}:$	$\# \mathrm{I}_{\mathrm{O}}(\mathrm{O}=32)$	1262	1465		
	Throughput (GB/s)	4.03	4.36		
$\mathcal{B}=2 \mathrm{~K}:$	$\#_{\mathrm{I} / \mathrm{O}}(K=16)$	1598	1599		
	Throughput (GB/s)	4.45	4.86		

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000 -runs for 10 MB randomly generated data

	Metric	Base $P_{\text {enc }}$	RePair	RePair + Fuse	RePair + Fuse + Pebbling
	\# \oplus	755	385	N/A	
	\#mem	2265	1155	677	
$\mathcal{B}=512$:	\#1/O(K = 64)	570	1231	936	
	Throughput (GB/s)	3.10	4.18		
$\mathcal{B}=1 \mathrm{~K}:$	\# ${ }_{1 / \mathrm{O}}(\mathrm{K}=32)$	1262	1465	1086	
	Throughput (GB/s)	4.03	4.36		
$\mathcal{B}=2 \mathrm{~K}$:	$\#_{\mathrm{I} / \mathrm{O}}(\mathrm{K}=16)$	1598	1599	1144	
	Throughput (GB/s)	4.45	4.86		

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000 -runs for 10 MB randomly generated data

	Metric	Base $P_{\text {enc }}$	RePair	RePair + Fuse	RePair + Fuse + Pebbling
	\# ${ }_{\text {¢ }}$	755	385	N/A	
	\#mem	2265	1155	677	
$\mathcal{B}=512$	\#1/O(K = 64)	570	1231	936	
	Throughput (GB/s)	3.10	4.18	6.98	
$\mathcal{B}=1 \mathrm{~K}$	\#1/0 ${ }_{\text {(}}$ ($=32$)	1262	1465	1086	
	Throughput (GB/s)	4.03	4.36	7.50	
$\mathcal{B}=2 \mathrm{~K}$	$\#_{\mathrm{I} / \mathrm{O}}(\mathrm{K}=16)$	1598	1599	1144	
	Throughput (GB/s)	4.45	4.86	7.12	

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000 -runs for 10 MB randomly generated data

	Metric	Base $P_{\text {enc }}$	RePair	RePair + Fuse	RePair + Fuse + Pebbling
$\mathcal{B}=512$:	$\# \oplus$	755	385	N/A	
	\#mem	2265	1155	677	
	$\# \mathrm{l} / \mathrm{O}(K=64)$	570	1231	936	636
	Throughput (GB/s)	3.10	4.18	6.98	7.24
$\mathcal{B}=1 \mathrm{~K}:$	\#ı/O $(K=32)$	1262	1465	1086	779
	Throughput (GB/s)	4.03	4.36	7.50	8.92
$\mathcal{B}=2 \mathrm{~K}:$	\#ı/O $(K=16)$	1598	1599	1144	845
	Throughput (GB/s)	4.45	4.86	7.12	8.55

Throughput Comparison (Intel + 1K-Blocking)

Enc	\#mem	\#1/0	Ours	ISA-L v2.30	Zhou \& Tian
RS(8, 4)	543	585	$8.86 \mathrm{~GB} / \mathrm{s}$	$7.18 \mathrm{~GB} / \mathrm{s}$	$4.94 \mathrm{~GB} / \mathrm{s}$
$\boldsymbol{R S}(9,4)$	611	671	8.83	6.91	N / A in their paper
RS(10, 4)	677	779	8.92	6.79	4.94

Throughput Comparison (Intel + 1K-Blocking)

Enc	$\#_{\text {mem }}$	$\#_{I}$ IO	Ours	ISA-L v2.30	Zhou \& Tian
RS(8,4)	543	585	$8.86 \mathrm{~GB} / \mathrm{s}$	$7.18 \mathrm{~GB} / \mathrm{s}$	$4.94 \mathrm{~GB} / \mathrm{s}$
$\mathrm{RS}(9,4)$	611	671	8.83	6.91	$\mathrm{~N} / \mathrm{A}$ in their paper
$\operatorname{RS}(10,4)$	677	779	8.92	6.79	4.94

Dec	$\#_{\text {mem }}$	$\#_{1 / 0}$	Ours	ISA-L v2.30	Zhou \& Tian
RS(8, 4)	747	811	$6.78 \mathrm{~GB} / \mathrm{s}$	$7.04 \mathrm{~GB} / \mathrm{s}$	$4.50 \mathrm{~GB} / \mathrm{s}$
RS(9,4)	829	968	6.71	6.58	$\mathrm{~N} / \mathrm{A}$
RS(10, 4$)$	923	1077	6.67	4.88	4.71

Conclusion (+ Other Throughput Scores)

intel 1K	Ours		ISA-L v 2.30	Zhou \& Tian		
$(\mathrm{GB} / \mathrm{sec})$	Enc	Dec	Enc	Dec	Enc	Dec
$\mathbf{R S}(8,3)$	12.32	8.82	9.09	9.25	6.08	5.57
$\mathbf{R S}(9,3)$	11.97	8.27	7.31	7.92	6.17	5.66
$\mathbf{R S}(10,3)$	11.78	8.89	6.78	7.93	$6.15 S$	5.90
$\mathbf{R S}(8,2)$	18.79	14.59	12.99	13.34	8.13_{E}	8.07_{E}
$\mathbf{R S}(9,2)$	18.93	14.27	11.85	12.03	8.34_{E}	8.04
$\mathbf{R S}(10,2)$	18.98	14.66	12.12	12.61	8.40_{E}	8.22_{E}

Conclusion

- We identified bitmatrix multiplication as straight line programs (SLP).
- We optimized XOR-based EC by optimizing SLPs using various program optimization techniques.
- Each of our techniques is not difficult; however, it suffices to match Intel's high performance library ISAL.
- As future work on cache optimization, I plan to accommodate multi-layer cache L1, L2, and L3 cache.

