
Accelerating XOR-Based Erasure
Coding using Program
Optimization Techniques
Yuya Uezato
DWANGO, Co., Ltd.

“Accelerating Erasure Coding (EC)” means ...

Optimizing matrix multiplication over two finite fields:

(for Standard EC) A×B over F[28],
(for XOR-based EC) C ×D over F[2].

▶ Byte Finite Field F[28] is a field with 256 elements.

▶ Bit Finite Field F[2] = {0, 1} is a field with the two bits.

A is small. B is large. In this talk, as an example, we consider:

14

10

A ×F[28]
10

1M–4M

B

This setting comes from erasure coding.

“Accelerating Erasure Coding (EC)” means ...

Optimizing matrix multiplication over two finite fields:

(for Standard EC) A×B over F[28],
(for XOR-based EC) C ×D over F[2].

▶ Byte Finite Field F[28] is a field with 256 elements.

▶ Bit Finite Field F[2] = {0, 1} is a field with the two bits.

A is small. B is large. In this talk, as an example, we consider:

14

10

A ×F[28]
10

1M–4M

B

This setting comes from erasure coding.

What we need to know about F[28] and F[2].

F[28] is a field with 28 = 256 elements.

⋆ 1-byte (8-bits) data can be seen
as an element of F[28].

▶ The definition is complex.
(We will see it in the later page).

F[2] = {0, 1} is a field of bits.

▶ Its addition is XOR ⊕.
▶ Its multiplication is AND &.

▶ 0 and 1 satisfy the following:

x⊕ 0 = 0⊕ x = x, y&1 = 1&y = y.

“Accelerating Erasure Coding (EC)” means ...

Optimizing matrix multiplication over two finite fields:

(for Standard EC) A×B over F[28],
(for XOR-based EC) C ×D over F[2].

▶ Byte Finite Field F[28] is a field with 256 elements.

▶ Bit Finite Field F[2] = {0, 1} is a field with the two bits.

A is small. B is large. In this talk, as an example, we consider:

14

10

A ×F[28]
10

1M–4M

B

This setting comes from erasure coding.

What we need to know about F[28] and F[2].

F[28] is a field with 28 = 256 elements.

⋆ 1-byte (8-bits) data can be seen
as an element of F[28].

▶ The definition is complex.
(We will see it in the later page).

F[2] = {0, 1} is a field of bits.

▶ Its addition is XOR ⊕.
▶ Its multiplication is AND &.

▶ 0 and 1 satisfy the following:

x⊕ 0 = 0⊕ x = x, y&1 = 1&y = y.

“Accelerating Erasure Coding (EC)” means ...

Optimizing matrix multiplication over two finite fields:

(for Standard EC) A×B over F[28],
(for XOR-based EC) C ×D over F[2].

▶ Byte Finite Field F[28] is a field with 256 elements.

▶ Bit Finite Field F[2] = {0, 1} is a field with the two bits.

A is small. B is large.

In this talk, as an example, we consider:

14

10

A ×F[28]
10

1M–4M

B

This setting comes from erasure coding.

“Accelerating Erasure Coding (EC)” means ...

Optimizing matrix multiplication over two finite fields:

(for Standard EC) A×B over F[28],
(for XOR-based EC) C ×D over F[2].

▶ Byte Finite Field F[28] is a field with 256 elements.

▶ Bit Finite Field F[2] = {0, 1} is a field with the two bits.

A is small. B is large. In this talk, as an example, we consider:

14

10

A ×F[28]
10

1M–4M

B

This setting comes from erasure coding.

“Accelerating Erasure Coding (EC)” means ...

Optimizing matrix multiplication over two finite fields:

(for Standard EC) A×B over F[28],
(for XOR-based EC) C ×D over F[2].

▶ Byte Finite Field F[28] is a field with 256 elements.

▶ Bit Finite Field F[2] = {0, 1} is a field with the two bits.

A is small. B is large. In this talk, as an example, we consider:

14

10

A ×F[28]
10

1M–4M

B

This setting comes from erasure coding.

What are Erasure Coding (EC) and XOR-Based EC

Erasure Coding: Method for Data Redundancy

Example (Building a streaming media server with criteria)

1. We have 14 nodes. Each node has a 20TB disk.

2. We can load data even if nodes ≤ 4 are down.
3. The total capacity of our server = 200TB.

▶ 14 · 20− 200 = 80TB can be used for data redundancy.

For this criteria, we can employ Reed-Solomon EC RS(d = 10, p = 4).
▶ d: we can assume d-nodes are living. (d = 14− p = 10).
▶ p: we can permit nodes ≤ p go down. (p = 4).

N -bytes

D encode
====⇒

N
10

f1

N
10

f2 · · ·
N
10

f14 # put di to node ni.

collect 10 di # N
10

fi1

N
10

fi2 · · ·
N
10

fi10
decode
====⇒

N -bytes

D

Erasure Coding: Method for Data Redundancy

Example (Building a streaming media server with criteria)

1. We have 14 nodes. Each node has a 20TB disk.

2. We can load data even if nodes ≤ 4 are down.
3. The total capacity of our server = 200TB.

▶ 14 · 20− 200 = 80TB can be used for data redundancy.

For this criteria, we can employ Reed-Solomon EC RS(d = 10, p = 4).
▶ d: we can assume d-nodes are living. (d = 14− p = 10).
▶ p: we can permit nodes ≤ p go down. (p = 4).

N -bytes

D encode
====⇒

N
10

f1

N
10

f2 · · ·
N
10

f14 # put di to node ni.

collect 10 di # N
10

fi1

N
10

fi2 · · ·
N
10

fi10
decode
====⇒

N -bytes

D

Erasure Coding: Method for Data Redundancy

Example (Building a streaming media server with criteria)

1. We have 14 nodes. Each node has a 20TB disk.

2. We can load data even if nodes ≤ 4 are down.
3. The total capacity of our server = 200TB.

▶ 14 · 20− 200 = 80TB can be used for data redundancy.

For this criteria, we can employ Reed-Solomon EC RS(d = 10, p = 4).
▶ d: we can assume d-nodes are living. (d = 14− p = 10).
▶ p: we can permit nodes ≤ p go down. (p = 4).

N -bytes

D encode
====⇒

N
10

f1

N
10

f2 · · ·
N
10

f14 # put di to node ni.

collect 10 di # N
10

fi1

N
10

fi2 · · ·
N
10

fi10
decode
====⇒

N -bytes

D

Erasure Coding: Method for Data Redundancy

Example (Building a streaming media server with criteria)

1. We have 14 nodes. Each node has a 20TB disk.

2. We can load data even if nodes ≤ 4 are down.
3. The total capacity of our server = 200TB.

▶ 14 · 20− 200 = 80TB can be used for data redundancy.

For this criteria, we can employ Reed-Solomon EC RS(d = 10, p = 4).
▶ d: we can assume d-nodes are living. (d = 14− p = 10).
▶ p: we can permit nodes ≤ p go down. (p = 4).

N -bytes

D encode
====⇒

N
10

f1

N
10

f2 · · ·
N
10

f14 # put di to node ni.

collect 10 di # N
10

fi1

N
10

fi2 · · ·
N
10

fi10
decode
====⇒

N -bytes

D

How encoding and decoding are implemented in RS(10, 4) ?

N -bytes

D
N
10

d1

N
10

d2 · · ·
N
10

d10
split

N
10

f1

N
10

f2 · · ·
N
10

f10 · · ·
N
10

f14

14

10

V ×F[28]

 d⃗1
...

d⃗10

N
10

fi1

N
10

fi2 · · ·
N
10

fi10

erase 4-fragments

10

10

W ×

 d⃗1
...

d⃗10

W
−1

▶ V : Vandermonde matrix

▶ W : square submatrix of V
▶ We have W−1 since
V is a Vandermonde matrix.

How encoding and decoding are implemented in RS(10, 4) ?

N -bytes

D
N
10

d1

N
10

d2 · · ·
N
10

d10
split

N
10

f1

N
10

f2 · · ·
N
10

f10 · · ·
N
10

f14

14

10

V ×F[28]

 d⃗1
...

d⃗10

N
10

fi1

N
10

fi2 · · ·
N
10

fi10

erase 4-fragments

10

10

W ×

 d⃗1
...

d⃗10

W
−1

▶ V : Vandermonde matrix

▶ W : square submatrix of V
▶ We have W−1 since
V is a Vandermonde matrix.

How encoding and decoding are implemented in RS(10, 4) ?

N -bytes

D
N
10

d1

N
10

d2 · · ·
N
10

d10
split

N
10

f1

N
10

f2 · · ·
N
10

f10 · · ·
N
10

f14

14

10

V ×F[28]

 d⃗1
...

d⃗10

N
10

fi1

N
10

fi2 · · ·
N
10

fi10

erase 4-fragments

10

10

W ×

 d⃗1
...

d⃗10

W
−1

▶ V : Vandermonde matrix

▶ W : square submatrix of V
▶ We have W−1 since
V is a Vandermonde matrix.

How encoding and decoding are implemented in RS(10, 4) ?

N -bytes

D
N
10

d1

N
10

d2 · · ·
N
10

d10
split

N
10

f1

N
10

f2 · · ·
N
10

f10 · · ·
N
10

f14

14

10

V ×F[28]

 d⃗1
...

d⃗10

N
10

fi1

N
10

fi2 · · ·
N
10

fi10

erase 4-fragments

10

10

W ×

 d⃗1
...

d⃗10

W−1

▶ V : Vandermonde matrix

▶ W : square submatrix of V

▶ We have W−1 since
V is a Vandermonde matrix.

How encoding and decoding are implemented in RS(10, 4) ?

N -bytes

D
N
10

d1

N
10

d2 · · ·
N
10

d10
split

N
10

f1

N
10

f2 · · ·
N
10

f10 · · ·
N
10

f14

14

10

V ×F[28]

 d⃗1
...

d⃗10

N
10

fi1

N
10

fi2 · · ·
N
10

fi10

erase 4-fragments

10

10

W ×

 d⃗1
...

d⃗10

W
−1

▶ V : Vandermonde matrix

▶ W : square submatrix of V
▶ We have W−1 since
V is a Vandermonde matrix.

How encoding and decoding are implemented in RS(10, 4) ?

N -bytes

D
N
10

d1

N
10

d2 · · ·
N
10

d10
split

N
10

f1

N
10

f2 · · ·
N
10

f10 · · ·
N
10

f14

14

10

V ×F[28]

 d⃗1
...

d⃗10

N
10

fi1

N
10

fi2 · · ·
N
10

fi10

erase 4-fragments

10

10

W ×

 d⃗1
...

d⃗10

W
−1

▶ V : Vandermonde matrix

▶ W : square submatrix of V
▶ We have W−1 since
V is a Vandermonde matrix.

How large is N in a real application?

In my company, D is a short video whose size is 10MB–40MB:

▶ The size of 10 secs videos of 1080p & 30fps ∼ 12MB.

▶ The size of 5 secs videos of 4K & 30fps ∼ 35MB.

Optimizing V ×F[28] D
Q. What is the heaviest operation on V ×F[28] D ?
A. Multiplication of F[28]:

▶ Internally, p ∈ F[28] is a 7-degree polynomial over F[2]:

b7x
7 + b6x

6 + · · ·+ b1x+ b0 where bi ∈ F[2].

▶ p1 + p2 of F[28] is the polynomial addition.
Easy because just componentwise XOR:

(b7 ⊕ b′7)x
7 + (b6 ⊕ b′6)x

6 + · · ·+ (b0 ⊕ b′0).

▶ On the other hand, p1 · p2 of F[28] is CPU-heavy and slow:
1. We do the 7-degree polynomial multiplication p1 × p2.
2. We take the modulo by a special polynomial (p1 × p2) mod p.

XOR-based EC is one way to vanish · of F[28].

Optimizing V ×F[28] D
Q. What is the heaviest operation on V ×F[28] D ?
A. Multiplication of F[28]:

▶ Internally, p ∈ F[28] is a 7-degree polynomial over F[2]:

b7x
7 + b6x

6 + · · ·+ b1x+ b0 where bi ∈ F[2].

▶ p1 + p2 of F[28] is the polynomial addition.
Easy because just componentwise XOR:

(b7 ⊕ b′7)x
7 + (b6 ⊕ b′6)x

6 + · · ·+ (b0 ⊕ b′0).

▶ On the other hand, p1 · p2 of F[28] is CPU-heavy and slow:
1. We do the 7-degree polynomial multiplication p1 × p2.
2. We take the modulo by a special polynomial (p1 × p2) mod p.

XOR-based EC is one way to vanish · of F[28].

Optimizing V ×F[28] D
Q. What is the heaviest operation on V ×F[28] D ?
A. Multiplication of F[28]:

▶ Internally, p ∈ F[28] is a 7-degree polynomial over F[2]:

b7x
7 + b6x

6 + · · ·+ b1x+ b0 where bi ∈ F[2].

▶ p1 + p2 of F[28] is the polynomial addition.
Easy because just componentwise XOR:

(b7 ⊕ b′7)x
7 + (b6 ⊕ b′6)x

6 + · · ·+ (b0 ⊕ b′0).

▶ On the other hand, p1 · p2 of F[28] is CPU-heavy and slow:
1. We do the 7-degree polynomial multiplication p1 × p2.
2. We take the modulo by a special polynomial (p1 × p2) mod p.

XOR-based EC is one way to vanish · of F[28].

Optimizing V ×F[28] D
Q. What is the heaviest operation on V ×F[28] D ?
A. Multiplication of F[28]:

▶ Internally, p ∈ F[28] is a 7-degree polynomial over F[2]:

b7x
7 + b6x

6 + · · ·+ b1x+ b0 where bi ∈ F[2].

▶ p1 + p2 of F[28] is the polynomial addition.
Easy because just componentwise XOR:

(b7 ⊕ b′7)x
7 + (b6 ⊕ b′6)x

6 + · · ·+ (b0 ⊕ b′0).

▶ On the other hand, p1 · p2 of F[28] is CPU-heavy and slow:
1. We do the 7-degree polynomial multiplication p1 × p2.
2. We take the modulo by a special polynomial (p1 × p2) mod p.

XOR-based EC is one way to vanish · of F[28].

Optimizing V ×F[28] D
Q. What is the heaviest operation on V ×F[28] D ?
A. Multiplication of F[28]:

▶ Internally, p ∈ F[28] is a 7-degree polynomial over F[2]:

b7x
7 + b6x

6 + · · ·+ b1x+ b0 where bi ∈ F[2].

▶ p1 + p2 of F[28] is the polynomial addition.
Easy because just componentwise XOR:

(b7 ⊕ b′7)x
7 + (b6 ⊕ b′6)x

6 + · · ·+ (b0 ⊕ b′0).

▶ On the other hand, p1 · p2 of F[28] is CPU-heavy and slow:
1. We do the 7-degree polynomial multiplication p1 × p2.
2. We take the modulo by a special polynomial (p1 × p2) mod p.

XOR-based EC is one way to vanish · of F[28].

XOR-based EC: From F[28] to BitMatrix (F[2]-Matrix)

▶ 1-byte and 8-bits are isomorphic: x ∈ F[28] ∼= x̃ ∈ 8

1

F[2] .

▶ There is an injective ring homomorphism B : F[28]→ 8

8

F[2]

I.e.,

XOR-based EC: From F[28] to BitMatrix (F[2]-Matrix)

▶ 1-byte and 8-bits are isomorphic: x ∈ F[28] ∼= x̃ ∈ 8

1

F[2] .

▶ There is an injective ring homomorphism B : F[28]→ 8

8

F[2] I.e.,

XOR-based EC: From F[28] to BitMatrix (F[2]-Matrix)

▶ 1-byte and 8-bits are isomorphic: x ∈ F[28] ∼= x̃ ∈ 8

1

F[2] .

▶ There is an injective ring homomorphism B : F[28]→ 8

8

F[2] I.e.,

∀x, y ∈ F[28].
{

x+ y = B−1(B(x) + B(y)),
x · y = B−1(B(x)× B(y))

XOR-based EC: From F[28] to BitMatrix (F[2]-Matrix)

▶ 1-byte and 8-bits are isomorphic: x ∈ F[28] ∼= x̃ ∈ 8

1

F[2] .

▶ There is an injective ring homomorphism B : F[28]→ 8

8

F[2] I.e.,

∀x, y ∈ F[28].
{

x+ y = B−1(B(x) + B(y)),
x · y = B−1(B(x)× B(y))

Prop: Emulate W−1 × (W ×D) = D in the F[2] world

B(W−1)
F[2]
× (B(W)

F[2]
× D̃) = B(W−1 ×W)× D̃ = D̃.

XOR-based EC: From F[28] to BitMatrix (F[2]-Matrix)

▶ 1-byte and 8-bits are isomorphic: x ∈ F[28] ∼= x̃ ∈ 8

1

F[2] .

▶ There is an injective ring homomorphism B : F[28]→ 8

8

F[2]

I.e.,

(
x1 x2
x3 x4

)
×F[28]

(
d1 · · ·
d2 · · ·

)
=

(
x1 · d1 + x2 · d2 · · ·
x3 · d1 + x4 · d4 · · ·

)
⇓

1 1 0 1 · · ·
0 0 1 1 · · ·
0 1 1 0 · · ·
1 0 0 1 · · ·
...

...
...

...
. . .

×F[2]

x⃗1
x⃗2
x⃗3
x⃗4
...

 =

x⃗1 ⊕ x⃗2 ⊕ x⃗4 ⊕ · · ·

x⃗3 ⊕ x⃗4 ⊕ · · ·
x⃗2 ⊕ x⃗3 ⊕ · · ·
x⃗1 ⊕ x⃗4 ⊕ · · ·

...

⊕ is byte-array XOR.

Comparing MM over F[28] and MM over F[2] for Encoding
Trade-off in

Matrix Multiplication
RS(10, 4) by F[28] RS(10, 4) by F[2]

Number of Core Operation V : 14

10

F[28] B(V) : 112
80

F[2]

Speed of Core Operation
+ of F[28] is fast
· of F[28] is slow

bytevec-XOR ⊕
is fast (SIMDable)

Encoding Throughput Comparison (on Intel CPU):

GB/s ISA-L♣ F[28] State-of-the-art♠ F[2]

Ours(New!) F[2]

RS(10, 4) 6.79 4.94

8.92

RS(10, 3) 6.78 6.15

11.78

RS(9, 3) 7.31 6.17

11.97

♣ ISA-L: Intel’s EC library https://github.com/intel/isa-l

♠ T. Zhou & C. Tian. 2020. Fast Erasure Coding for Data Storage: A
Comprehensive Study of the Acceleration Techniques.

https://github.com/intel/isa-l

Comparing MM over F[28] and MM over F[2] for Encoding
Trade-off in

Matrix Multiplication
RS(10, 4) by F[28] RS(10, 4) by F[2]

Number of Core Operation V : 14

10

F[28] B(V) : 112
80

F[2]

Speed of Core Operation
+ of F[28] is fast
· of F[28] is slow

bytevec-XOR ⊕
is fast (SIMDable)

Encoding Throughput Comparison (on Intel CPU):

GB/s ISA-L♣ F[28] State-of-the-art♠ F[2]

Ours(New!) F[2]

RS(10, 4) 6.79 4.94

8.92

RS(10, 3) 6.78 6.15

11.78

RS(9, 3) 7.31 6.17

11.97

♣ ISA-L: Intel’s EC library https://github.com/intel/isa-l

♠ T. Zhou & C. Tian. 2020. Fast Erasure Coding for Data Storage: A
Comprehensive Study of the Acceleration Techniques.

https://github.com/intel/isa-l

Comparing MM over F[28] and MM over F[2] for Encoding
Trade-off in

Matrix Multiplication
RS(10, 4) by F[28] RS(10, 4) by F[2]

Number of Core Operation V : 14

10

F[28] B(V) : 112
80

F[2]

Speed of Core Operation
+ of F[28] is fast
· of F[28] is slow

bytevec-XOR ⊕
is fast (SIMDable)

Encoding Throughput Comparison (on Intel CPU):

GB/s ISA-L♣ F[28] State-of-the-art♠ F[2] Ours(New!) F[2]
RS(10, 4) 6.79 4.94 8.92
RS(10, 3) 6.78 6.15 11.78
RS(9, 3) 7.31 6.17 11.97

♣ ISA-L: Intel’s EC library https://github.com/intel/isa-l

♠ T. Zhou & C. Tian. 2020. Fast Erasure Coding for Data Storage: A
Comprehensive Study of the Acceleration Techniques.

https://github.com/intel/isa-l

Our Contribution:
Optimizing Bitmatrix Multiplication

as

Program Optimization Problem

MM over F[2] = Running Straight Line Program
We identify bitmatrix multiplication as straight line program (SLP): 1 1 0 0

1 1 1 0
0 1 1 1

×F[2]

a⃗

b⃗
c⃗

d⃗

=

 a⃗⊕ b⃗

a⃗⊕ b⃗⊕ c⃗

b⃗⊕ c⃗⊕ d⃗

P (a, b, c, d)
v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← b⊕ c⊕ d;
return(v1, v2, v3)

JP K = return(v1, v2, v3)
=

〈
a⊕ b,
a⊕ b⊕ c,
b⊕ c⊕ d

〉
⋆ ”Bitmatrix as SLP” is not a new idea (See. Boyar+ 2008)

▶ SLP only allow assignments with one kind binary operator ⊕.
▶ SLP do not have functions, if-branchings, and while-loop, etc.

⇓

MM over F[2] = Running Straight Line Program
We identify bitmatrix multiplication as straight line program (SLP): 1 1 0 0

1 1 1 0
0 1 1 1

×F[2]

a⃗

b⃗
c⃗

d⃗

 =

 a⃗⊕ b⃗

a⃗⊕ b⃗⊕ c⃗

b⃗⊕ c⃗⊕ d⃗

P (a, b, c, d)
v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← b⊕ c⊕ d;
return(v1, v2, v3)

JP K = return(v1, v2, v3)
=

〈
a⊕ b,
a⊕ b⊕ c,
b⊕ c⊕ d

〉

⋆ ”Bitmatrix as SLP” is not a new idea (See. Boyar+ 2008)

▶ SLP only allow assignments with one kind binary operator ⊕.
▶ SLP do not have functions, if-branchings, and while-loop, etc.

⇓

MM over F[2] = Running Straight Line Program
We identify bitmatrix multiplication as straight line program (SLP): 1 1 0 0

1 1 1 0
0 1 1 1

×F[2]

a⃗

b⃗
c⃗

d⃗

 =

 a⃗⊕ b⃗

a⃗⊕ b⃗⊕ c⃗

b⃗⊕ c⃗⊕ d⃗

P (a, b, c, d)
v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← b⊕ c⊕ d;
return(v1, v2, v3)

JP K = return(v1, v2, v3)
=

〈
a⊕ b,
a⊕ b⊕ c,
b⊕ c⊕ d

〉
⋆ ”Bitmatrix as SLP” is not a new idea (See. Boyar+ 2008)

▶ SLP only allow assignments with one kind binary operator ⊕.
▶ SLP do not have functions, if-branchings, and while-loop, etc.

⇓

MM over F[2] = Running Straight Line Program
We identify bitmatrix multiplication as straight line program (SLP): 1 1 0 0

1 1 1 0
0 1 1 1

×F[2]

a⃗

b⃗
c⃗

d⃗

 =

 a⃗⊕ b⃗

a⃗⊕ b⃗⊕ c⃗

b⃗⊕ c⃗⊕ d⃗

P (a, b, c, d)
v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← b⊕ c⊕ d;
return(v1, v2, v3)

JP K = return(v1, v2, v3)
=

〈
a⊕ b,
a⊕ b⊕ c,
b⊕ c⊕ d

〉
⋆ ”Bitmatrix as SLP” is not a new idea (See. Boyar+ 2008)

▶ SLP only allow assignments with one kind binary operator ⊕.
▶ SLP do not have functions, if-branchings, and while-loop, etc.

⇓

XOR Optimization: Reducing XORs

Optimization Metric #⊕(): the number of XORs.

P #⊕ = 8
v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← a⊕ b⊕ c⊕ d;
v4 ← b⊕ c⊕ d;

return(v1, v2, v3, v4)

⇒

Q

#⊕ = 4
v1 ← a⊕ b;
v2 ← v1 ⊕ c;
v3 ← v2 ⊕ d;
v4 ← v3 ⊕ a;

∵ (a ⊕ b ⊕ c ⊕ d) ⊕ a = b ⊕ c ⊕ d.
return(v1, v2, v3, v4)

▶ P and Q are equivalent: JP K = JQK.
▶ Intuitively, Q (#⊕(Q) = 4) runs faster than P (#⊕(P) = 8).

XOR Optimization: Reducing XORs

Optimization Metric #⊕(): the number of XORs.

P #⊕ = 8
v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← a⊕ b⊕ c⊕ d;
v4 ← b⊕ c⊕ d;

return(v1, v2, v3, v4)

⇒

Q

#⊕ = 4

v1 ← a⊕ b;

v2 ← v1 ⊕ c;
v3 ← v2 ⊕ d;
v4 ← v3 ⊕ a;

∵ (a ⊕ b ⊕ c ⊕ d) ⊕ a = b ⊕ c ⊕ d.
return(v1, v2, v3, v4)

▶ P and Q are equivalent: JP K = JQK.
▶ Intuitively, Q (#⊕(Q) = 4) runs faster than P (#⊕(P) = 8).

XOR Optimization: Reducing XORs

Optimization Metric #⊕(): the number of XORs.

P #⊕ = 8
v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← a⊕ b⊕ c⊕ d;
v4 ← b⊕ c⊕ d;

return(v1, v2, v3, v4)

⇒

Q

#⊕ = 4

v1 ← a⊕ b;
v2 ← v1 ⊕ c;

v3 ← v2 ⊕ d;
v4 ← v3 ⊕ a;

∵ (a ⊕ b ⊕ c ⊕ d) ⊕ a = b ⊕ c ⊕ d.
return(v1, v2, v3, v4)

▶ P and Q are equivalent: JP K = JQK.
▶ Intuitively, Q (#⊕(Q) = 4) runs faster than P (#⊕(P) = 8).

XOR Optimization: Reducing XORs

Optimization Metric #⊕(): the number of XORs.

P #⊕ = 8
v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← a⊕ b⊕ c⊕ d;
v4 ← b⊕ c⊕ d;

return(v1, v2, v3, v4)

⇒

Q

#⊕ = 4

v1 ← a⊕ b;
v2 ← v1 ⊕ c;
v3 ← v2 ⊕ d;

v4 ← v3 ⊕ a;
∵ (a ⊕ b ⊕ c ⊕ d) ⊕ a = b ⊕ c ⊕ d.

return(v1, v2, v3, v4)

▶ P and Q are equivalent: JP K = JQK.
▶ Intuitively, Q (#⊕(Q) = 4) runs faster than P (#⊕(P) = 8).

XOR Optimization: Reducing XORs

Optimization Metric #⊕(): the number of XORs.

P #⊕ = 8
v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← a⊕ b⊕ c⊕ d;
v4 ← b⊕ c⊕ d;

return(v1, v2, v3, v4)

⇒

Q #⊕ = 4
v1 ← a⊕ b;
v2 ← v1 ⊕ c;
v3 ← v2 ⊕ d;
v4 ← v3 ⊕ a;

∵ (a ⊕ b ⊕ c ⊕ d) ⊕ a = b ⊕ c ⊕ d.
return(v1, v2, v3, v4)

▶ P and Q are equivalent: JP K = JQK.
▶ Intuitively, Q (#⊕(Q) = 4) runs faster than P (#⊕(P) = 8).

XOR Optimization: Reducing XORs

Optimization Metric #⊕(): the number of XORs.

P #⊕ = 8
v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← a⊕ b⊕ c⊕ d;
v4 ← b⊕ c⊕ d;

return(v1, v2, v3, v4)

⇒

Q #⊕ = 4
v1 ← a⊕ b;
v2 ← v1 ⊕ c;
v3 ← v2 ⊕ d;
v4 ← v3 ⊕ a;

∵ (a ⊕ b ⊕ c ⊕ d) ⊕ a = b ⊕ c ⊕ d.
return(v1, v2, v3, v4)

▶ P and Q are equivalent: JP K = JQK.
▶ Intuitively, Q (#⊕(Q) = 4) runs faster than P (#⊕(P) = 8).

XOR Optimization: Reducing XORs

Optimization Metric #⊕(): the number of XORs.

P #⊕ = 8
v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← a⊕ b⊕ c⊕ d;
v4 ← b⊕ c⊕ d;

return(v1, v2, v3, v4)

⇒

Q #⊕ = 4
v1 ← a⊕ b;
v2 ← v1 ⊕ c;
v3 ← v2 ⊕ d;
v4 ← v3 ⊕ a;

∵ (a ⊕ b ⊕ c ⊕ d) ⊕ a = b ⊕ c ⊕ d.
return(v1, v2, v3, v4)

▶ P and Q are equivalent: JP K = JQK.
▶ Intuitively, Q (#⊕(Q) = 4) runs faster than P (#⊕(P) = 8).

Question. For a given SLP P ,
can we quickly find the most efficient equivalent SLP Q?

XOR Optimization: Reducing XORs

Optimization Metric #⊕(): the number of XORs.

P #⊕ = 8
v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← a⊕ b⊕ c⊕ d;
v4 ← b⊕ c⊕ d;

return(v1, v2, v3, v4)

⇒

Q #⊕ = 4
v1 ← a⊕ b;
v2 ← v1 ⊕ c;
v3 ← v2 ⊕ d;
v4 ← v3 ⊕ a;

∵ (a ⊕ b ⊕ c ⊕ d) ⊕ a = b ⊕ c ⊕ d.
return(v1, v2, v3, v4)

▶ P and Q are equivalent: JP K = JQK.
▶ Intuitively, Q (#⊕(Q) = 4) runs faster than P (#⊕(P) = 8).

Theorem (Boyar+ 2013)

Unless P = NP, for a given SLP P , in polynomial time,
we cannot find Q such that JP K = JQK and minimizes #⊕(Q).

Our Heuristic: Grammar Compression Algorithm RePair

Originally, RePair is an algorithm to compress context-free grammars.
We use it identifying SLPs as commutative CFGs.
▶ Larsson & Moffat. 1999. Offline dictionary-based compression
▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

RePair = Repeat Pair. The key operation is Pair:

v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← a⊕ b⊕ c⊕ d;
v4 ← b⊕ c⊕ d;

#⊕ = 8

Pair(a, c)
========⇒

t1 ← a⊕ c;
v1 ← a⊕ b;
v2 ← t1 ⊕ b;
v3 ← t1 ⊕ b⊕ d;
v4 ← b⊕ c⊕ d;

#⊕ = 7

The commutative version of RePair accommodates

Commutativity : x⊕ y = y ⊕ x, Associativity : (x⊕ y)⊕ z = x⊕ (y ⊕ z).

In the paper, we extend it to XorRePair by accommodating
Cancellativity: x⊕ x⊕ y = y.

Our Heuristic: Grammar Compression Algorithm RePair

Originally, RePair is an algorithm to compress context-free grammars.
We use it identifying SLPs as commutative CFGs.
▶ Larsson & Moffat. 1999. Offline dictionary-based compression
▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

RePair = Repeat Pair. The key operation is Pair:

v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← a⊕ b⊕ c⊕ d;
v4 ← b⊕ c⊕ d;

#⊕ = 8

Pair(a, c)
========⇒

t1 ← a⊕ c;
v1 ← a⊕ b;
v2 ← t1 ⊕ b;
v3 ← t1 ⊕ b⊕ d;
v4 ← b⊕ c⊕ d;

#⊕ = 7

The commutative version of RePair accommodates

Commutativity : x⊕ y = y ⊕ x, Associativity : (x⊕ y)⊕ z = x⊕ (y ⊕ z).

In the paper, we extend it to XorRePair by accommodating
Cancellativity: x⊕ x⊕ y = y.

Our Heuristic: Grammar Compression Algorithm RePair

Originally, RePair is an algorithm to compress context-free grammars.
We use it identifying SLPs as commutative CFGs.
▶ Larsson & Moffat. 1999. Offline dictionary-based compression
▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

RePair = Repeat Pair. The key operation is Pair:

v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← a⊕ b⊕ c⊕ d;
v4 ← b⊕ c⊕ d;

#⊕ = 8

Pair(a, c)
========⇒

t1 ← a⊕ c;
v1 ← a⊕ b;
v2 ← t1 ⊕ b;
v3 ← t1 ⊕ b⊕ d;
v4 ← b⊕ c⊕ d;

#⊕ = 7

How do we choose a pair of terms to do pairing?

The commutative version of RePair accommodates

Commutativity : x⊕ y = y ⊕ x, Associativity : (x⊕ y)⊕ z = x⊕ (y ⊕ z).

In the paper, we extend it to XorRePair by accommodating
Cancellativity: x⊕ x⊕ y = y.

Our Heuristic: Grammar Compression Algorithm RePair

Originally, RePair is an algorithm to compress context-free grammars.
We use it identifying SLPs as commutative CFGs.
▶ Larsson & Moffat. 1999. Offline dictionary-based compression
▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

RePair = Repeat Pair. The key operation is Pair:

v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← a⊕ b⊕ c⊕ d;
v4 ← b⊕ c⊕ d;

#⊕ = 8

Pair(a, c)
========⇒

t1 ← a⊕ c;
v1 ← a⊕ b;
v2 ← t1 ⊕ b;
v3 ← t1 ⊕ b⊕ d;
v4 ← b⊕ c⊕ d;

#⊕ = 7

How do we choose a pair of terms to do pairing? Greedy.

v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← a⊕ b⊕ c⊕ d;
v4 ← b⊕ c⊕ d;

Pair(a, b)
========⇒

t1 ← a⊕ b;
v2 ← t1 ⊕ c;
v3 ← t1 ⊕ c⊕ d;
v4 ← b⊕ c⊕ d;

#⊕ = 6

The commutative version of RePair accommodates

Commutativity : x⊕ y = y ⊕ x, Associativity : (x⊕ y)⊕ z = x⊕ (y ⊕ z).

In the paper, we extend it to XorRePair by accommodating
Cancellativity: x⊕ x⊕ y = y.

Our Heuristic: Grammar Compression Algorithm RePair

Originally, RePair is an algorithm to compress context-free grammars.
We use it identifying SLPs as commutative CFGs.
▶ Larsson & Moffat. 1999. Offline dictionary-based compression
▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

RePair = Repeat Pair. The key operation is Pair:

v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← a⊕ b⊕ c⊕ d;
v4 ← b⊕ c⊕ d;

#⊕ = 8

Pair(a, c)
========⇒

t1 ← a⊕ c;
v1 ← a⊕ b;
v2 ← t1 ⊕ b;
v3 ← t1 ⊕ b⊕ d;
v4 ← b⊕ c⊕ d;

#⊕ = 7

t1 ← a⊕ b;
v2 ← t1 ⊕ c;
v3 ← t1 ⊕ c⊕ d;
v4 ← b⊕ c⊕ d;

Pair(t1,c)
======⇒

t1 ← a⊕ b;
t2 ← t1 ⊕ c;
v3 ← t2 ⊕ d;
v4 ← b⊕ c⊕ d;

Pair(b,c)
======⇒

t1 ← a⊕ b;
t2 ← t1 ⊕ c;
t3 ← b⊕ c;
v3 ← t2 ⊕ d;
v4 ← t3 ⊕ d;

The commutative version of RePair accommodates

Commutativity : x⊕ y = y ⊕ x, Associativity : (x⊕ y)⊕ z = x⊕ (y ⊕ z).

In the paper, we extend it to XorRePair by accommodating
Cancellativity: x⊕ x⊕ y = y.

Our Heuristic: Grammar Compression Algorithm RePair

Originally, RePair is an algorithm to compress context-free grammars.
We use it identifying SLPs as commutative CFGs.
▶ Larsson & Moffat. 1999. Offline dictionary-based compression
▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

RePair = Repeat Pair. The key operation is Pair:

v1 ← a⊕ b;
v2 ← a⊕ b⊕ c;
v3 ← a⊕ b⊕ c⊕ d;
v4 ← b⊕ c⊕ d;

#⊕ = 8

Pair(a, c)
========⇒

t1 ← a⊕ c;
v1 ← a⊕ b;
v2 ← t1 ⊕ b;
v3 ← t1 ⊕ b⊕ d;
v4 ← b⊕ c⊕ d;

#⊕ = 7

The commutative version of RePair accommodates

Commutativity : x⊕ y = y ⊕ x, Associativity : (x⊕ y)⊕ z = x⊕ (y ⊕ z).

In the paper, we extend it to XorRePair by accommodating
Cancellativity: x⊕ x⊕ y = y.

Memory Access Optimization: MultiSLP

Optimization Metric: #mem() = the number of memory access.

Quiz: How many times will this program access memory?

#mem

(
v ← A⊕B ⊕ C ⊕D

)
= ?

because each ⊕ issues two read and one write:

t1 ← A⊕B; t2 ← t1 ⊕ C; v ← t2 ⊕D;

On MultiSLP, we can

v ← ⊕4(A,B,C,D);

Thus, we have #mem = 5.

⊕4(A, B, C, D: [byte]) {

var v = Array::new(A.len);
for i in [0..A.len):
byte r = A[i] ^ B[i]
r = r ^ C[i];
v[i] = r ^ D[i];

return v;
}

Memory Access Optimization: MultiSLP

Optimization Metric: #mem() = the number of memory access.

Quiz: How many times will this program access memory?

#mem

(
v ← A⊕B ⊕ C ⊕D

)
= 9

because each ⊕ issues two read and one write:

t1 ← A⊕B; t2 ← t1 ⊕ C; v ← t2 ⊕D;

On MultiSLP, we can

v ← ⊕4(A,B,C,D);

Thus, we have #mem = 5.

⊕4(A, B, C, D: [byte]) {

var v = Array::new(A.len);
for i in [0..A.len):
byte r = A[i] ^ B[i]
r = r ^ C[i];
v[i] = r ^ D[i];

return v;
}

Memory Access Optimization: MultiSLP

Optimization Metric: #mem() = the number of memory access.

Quiz: How many times will this program access memory?

#mem

(
v ← A⊕B ⊕ C ⊕D

)
= 9

because each ⊕ issues two read and one write:

t1 ← A⊕B; t2 ← t1 ⊕ C; v ← t2 ⊕D;

t1 and t2 are wasteful: they are released immediately after allocated.

To reduce such wastefulness,
we extend SLP to Multi SLP, which allows n-arity XORs.

On MultiSLP, we can

v ← ⊕4(A,B,C,D);

Thus, we have #mem = 5.

⊕4(A, B, C, D: [byte]) {

var v = Array::new(A.len);
for i in [0..A.len):
byte r = A[i] ^ B[i]
r = r ^ C[i];
v[i] = r ^ D[i];

return v;
}

Memory Access Optimization: MultiSLP

Optimization Metric: #mem() = the number of memory access.

Quiz: How many times will this program access memory?

#mem

(
v ← A⊕B ⊕ C ⊕D

)
= 9

because each ⊕ issues two read and one write:

t1 ← A⊕B; t2 ← t1 ⊕ C; v ← t2 ⊕D;

On MultiSLP, we can

v ← ⊕4(A,B,C,D);

Thus, we have #mem = 5.

⊕4(A, B, C, D: [byte]) {

var v = Array::new(A.len);
for i in [0..A.len):
byte r = A[i] ^ B[i]
r = r ^ C[i];
v[i] = r ^ D[i];

return v;
}

New Metric and Memory Optimization Problem

From a given P , can we quickly (= in polynomial time)
find an equivalent and most memory efficient Q w.r.t. #mem ?

P :
v1 ← a⊕ b⊕ c⊕ d⊕ e;
v2 ← a⊕ b⊕ c⊕ d⊕ f ;

#mem(P) = 24

=⇒ Q :

t← ⊕4(a, b, c, d);
v1 ← t⊕ e;
v2 ← t⊕ f ;

#mem(Q) = 11

Unfortunately, we showed the following intractability result:

Theorem (Our NEW theoretical result)

Unless P = NP, for a given SLP P , in polynomial time,
we cannot find Q that JP K = JQK and minimizes #mem(Q).

New Metric and Memory Optimization Problem

From a given P , can we quickly (= in polynomial time)
find an equivalent and most memory efficient Q w.r.t. #mem ?

P :
v1 ← a⊕ b⊕ c⊕ d⊕ e;
v2 ← a⊕ b⊕ c⊕ d⊕ f ;

#mem(P) = 24

=⇒ Q :

t← ⊕4(a, b, c, d);
v1 ← t⊕ e;
v2 ← t⊕ f ;

#mem(Q) = 11

Unfortunately, we showed the following intractability result:

Theorem (Our NEW theoretical result)

Unless P = NP, for a given SLP P , in polynomial time,
we cannot find Q that JP K = JQK and minimizes #mem(Q).

New Metric and Memory Optimization Problem

From a given P , can we quickly (= in polynomial time)
find an equivalent and most memory efficient Q w.r.t. #mem ?

P :
v1 ← a⊕ b⊕ c⊕ d⊕ e;
v2 ← a⊕ b⊕ c⊕ d⊕ f ;

#mem(P) = 24

=⇒ Q :

t← ⊕4(a, b, c, d);
v1 ← t⊕ e;
v2 ← t⊕ f ;

#mem(Q) = 11

Unfortunately, we showed the following intractability result:

Theorem (Our NEW theoretical result)

Unless P = NP, for a given SLP P , in polynomial time,
we cannot find Q that JP K = JQK and minimizes #mem(Q).

Our Heuristic: XOR Fusion

We fuse XORs when the following holds:

α← ⊕(x1, . . . , xn);
...

β ← ⊕(y1, . . . , α, . . . , ym)
☆ α appears once in the program

fuse
==⇒ β ← ⊕(y1, . . . , x1, . . . , xn, . . . , ym)

Example.

v1 ← a⊕ b⊕ c⊕ d⊕ e;
v2 ← a⊕ b⊕ c⊕ d⊕ f ;

#mem(24)

RePair
=====⇒

t1 ← a⊕ b;
t2 ← t1 ⊕ c;
t3 ← t2 ⊕ d;
v1 ← t3 ⊕ e;
v2 ← t3 ⊕ f ;

#mem(15)

fuse(t1)
=====⇒

t2 ← ⊕3(a, b, c);
t3 ← t2 ⊕ d;
v1 ← t3 ⊕ e;
v2 ← t3 ⊕ f ;

#mem(13)

fuse(t2)
=====⇒

t3 ← ⊕4(a, b, c, d);
v1 ← t3 ⊕ e;
v2 ← t3 ⊕ f ;

#mem(11)

NOT fuse(t3) by ☆
===========⇒

v1 ← ⊕5(a, b, c, d, e);
v2 ← ⊕5(a, b, c, d, f);

#mem(12)

Our Heuristic: XOR Fusion

We fuse XORs when the following holds:

α← ⊕(x1, . . . , xn);
...

β ← ⊕(y1, . . . , α, . . . , ym)
☆ α appears once in the program

fuse
==⇒ β ← ⊕(y1, . . . , x1, . . . , xn, . . . , ym)

Example.

v1 ← a⊕ b⊕ c⊕ d⊕ e;
v2 ← a⊕ b⊕ c⊕ d⊕ f ;

#mem(24)

RePair
=====⇒

t1 ← a⊕ b;
t2 ← t1 ⊕ c;
t3 ← t2 ⊕ d;
v1 ← t3 ⊕ e;
v2 ← t3 ⊕ f ;

#mem(15)

fuse(t1)
=====⇒

t2 ← ⊕3(a, b, c);
t3 ← t2 ⊕ d;
v1 ← t3 ⊕ e;
v2 ← t3 ⊕ f ;

#mem(13)

fuse(t2)
=====⇒

t3 ← ⊕4(a, b, c, d);
v1 ← t3 ⊕ e;
v2 ← t3 ⊕ f ;

#mem(11)

NOT fuse(t3) by ☆
===========⇒

v1 ← ⊕5(a, b, c, d, e);
v2 ← ⊕5(a, b, c, d, f);

#mem(12)

Our Heuristic: XOR Fusion

We fuse XORs when the following holds:

α← ⊕(x1, . . . , xn);
...

β ← ⊕(y1, . . . , α, . . . , ym)
☆ α appears once in the program

fuse
==⇒ β ← ⊕(y1, . . . , x1, . . . , xn, . . . , ym)

Example.

v1 ← a⊕ b⊕ c⊕ d⊕ e;
v2 ← a⊕ b⊕ c⊕ d⊕ f ;

#mem(24)

RePair
=====⇒

t1 ← a⊕ b;
t2 ← t1 ⊕ c;
t3 ← t2 ⊕ d;
v1 ← t3 ⊕ e;
v2 ← t3 ⊕ f ;

#mem(15)

fuse(t1)
=====⇒

t2 ← ⊕3(a, b, c);
t3 ← t2 ⊕ d;
v1 ← t3 ⊕ e;
v2 ← t3 ⊕ f ;

#mem(13)

fuse(t2)
=====⇒

t3 ← ⊕4(a, b, c, d);
v1 ← t3 ⊕ e;
v2 ← t3 ⊕ f ;

#mem(11)

NOT fuse(t3) by ☆
===========⇒

v1 ← ⊕5(a, b, c, d, e);
v2 ← ⊕5(a, b, c, d, f);

#mem(12)

Our Heuristic: XOR Fusion

We fuse XORs when the following holds:

α← ⊕(x1, . . . , xn);
...

β ← ⊕(y1, . . . , α, . . . , ym)
☆ α appears once in the program

fuse
==⇒ β ← ⊕(y1, . . . , x1, . . . , xn, . . . , ym)

Example.

v1 ← a⊕ b⊕ c⊕ d⊕ e;
v2 ← a⊕ b⊕ c⊕ d⊕ f ;

#mem(24)

RePair
=====⇒

t1 ← a⊕ b;
t2 ← t1 ⊕ c;
t3 ← t2 ⊕ d;
v1 ← t3 ⊕ e;
v2 ← t3 ⊕ f ;

#mem(15)

fuse(t1)
=====⇒

t2 ← ⊕3(a, b, c);
t3 ← t2 ⊕ d;
v1 ← t3 ⊕ e;
v2 ← t3 ⊕ f ;

#mem(13)

fuse(t2)
=====⇒

t3 ← ⊕4(a, b, c, d);
v1 ← t3 ⊕ e;
v2 ← t3 ⊕ f ;

#mem(11)

NOT fuse(t3) by ☆
===========⇒

v1 ← ⊕5(a, b, c, d, e);
v2 ← ⊕5(a, b, c, d, f);

#mem(12)

Cache Optimization: SLP + LRU Cache

Metric #I/O(K,): the total number of I/O transfers between
memory andf cache of K-capacity.

We have three kinds of operations for cache:
▶ H(x): Cache Hit for an element x. #I/O = 0.

▶ R(x): Cache miss. Evict LRU to mem. and read x from mem. #I/O = 2.
▶ W(x): Cache miss. Evict LRU to mem. and write x to cache. #I/O = 1.

Example: Calculate #I/O(4, P) for the following example SLP P :

v1 ← A⊕B;

∗1 ∗2 ∗3 ∗4
R(A)−−−→
2

∗2 ∗3 ∗4A
R(B)−−−→

2
∗3 ∗4 AB

W(v1)−−−→
1

v2 ← ⊕(E,D,A);

∗4 ABv1

R(E)−−−−→
2

ABv1E
R(D)−−−→

2
Bv1ED

R(A)−−−→
2

v1EDA
W(v2)−−−→

1

v3 ← v1 ⊕ E;

EDAv2
R(v1)−−−→

2
DAv2v1

R(E)−−−→
2

Av2v1E
W(v3)−−−→

1

v4 ← v1 ⊕ C;

v2v1Ev3
H(v1)−−−→

0
v2Ev3v1

R(C)−−−→
2

Ev3v1C
W(v4)−−−→

1

return(v2, v3, v4);

v3v1Cv4 =⇒ #I/O(4, P) = 20.

Cache Optimization: SLP + LRU Cache

Metric #I/O(K,): the total number of I/O transfers between
memory andf cache of K-capacity.

We have three kinds of operations for cache:
▶ H(x): Cache Hit for an element x. #I/O = 0.

▶ R(x): Cache miss. Evict LRU to mem. and read x from mem. #I/O = 2.
▶ W(x): Cache miss. Evict LRU to mem. and write x to cache. #I/O = 1.

Example: Calculate #I/O(4, P) for the following example SLP P :

v1 ← A⊕B;

∗1 ∗2 ∗3 ∗4
R(A)−−−→
2

∗2 ∗3 ∗4A
R(B)−−−→

2
∗3 ∗4 AB

W(v1)−−−→
1

v2 ← ⊕(E,D,A);

∗4 ABv1

R(E)−−−−→
2

ABv1E
R(D)−−−→

2
Bv1ED

R(A)−−−→
2

v1EDA
W(v2)−−−→

1

v3 ← v1 ⊕ E;

EDAv2
R(v1)−−−→

2
DAv2v1

R(E)−−−→
2

Av2v1E
W(v3)−−−→

1

v4 ← v1 ⊕ C;

v2v1Ev3
H(v1)−−−→

0
v2Ev3v1

R(C)−−−→
2

Ev3v1C
W(v4)−−−→

1

return(v2, v3, v4);

v3v1Cv4 =⇒ #I/O(4, P) = 20.

Cache Optimization: SLP + LRU Cache

Metric #I/O(K,): the total number of I/O transfers between
memory andf cache of K-capacity.

We have three kinds of operations for cache:
▶ H(x): Cache Hit for an element x. #I/O = 0.

▶ R(x): Cache miss. Evict LRU to mem. and read x from mem. #I/O = 2.
▶ W(x): Cache miss. Evict LRU to mem. and write x to cache. #I/O = 1.

Example: Calculate #I/O(4, P) for the following example SLP P :

v1 ← A⊕B; ∗1 ∗2 ∗3 ∗4

R(A)−−−→
2

∗2 ∗3 ∗4A
R(B)−−−→

2
∗3 ∗4 AB

W(v1)−−−→
1

v2 ← ⊕(E,D,A);

∗4 ABv1

R(E)−−−−→
2

ABv1E
R(D)−−−→

2
Bv1ED

R(A)−−−→
2

v1EDA
W(v2)−−−→

1

v3 ← v1 ⊕ E;

EDAv2
R(v1)−−−→

2
DAv2v1

R(E)−−−→
2

Av2v1E
W(v3)−−−→

1

v4 ← v1 ⊕ C;

v2v1Ev3
H(v1)−−−→

0
v2Ev3v1

R(C)−−−→
2

Ev3v1C
W(v4)−−−→

1

return(v2, v3, v4);

v3v1Cv4 =⇒ #I/O(4, P) = 20.

Cache Optimization: SLP + LRU Cache

Metric #I/O(K,): the total number of I/O transfers between
memory andf cache of K-capacity.

We have three kinds of operations for cache:
▶ H(x): Cache Hit for an element x. #I/O = 0.

▶ R(x): Cache miss. Evict LRU to mem. and read x from mem. #I/O = 2.
▶ W(x): Cache miss. Evict LRU to mem. and write x to cache. #I/O = 1.

Example: Calculate #I/O(4, P) for the following example SLP P :

v1 ← A⊕B; ∗1 ∗2 ∗3 ∗4
R(A)−−−→
2

∗2 ∗3 ∗4A

R(B)−−−→
2

∗3 ∗4 AB
W(v1)−−−→

1

v2 ← ⊕(E,D,A);

∗4 ABv1

R(E)−−−−→
2

ABv1E
R(D)−−−→

2
Bv1ED

R(A)−−−→
2

v1EDA
W(v2)−−−→

1

v3 ← v1 ⊕ E;

EDAv2
R(v1)−−−→

2
DAv2v1

R(E)−−−→
2

Av2v1E
W(v3)−−−→

1

v4 ← v1 ⊕ C;

v2v1Ev3
H(v1)−−−→

0
v2Ev3v1

R(C)−−−→
2

Ev3v1C
W(v4)−−−→

1

return(v2, v3, v4);

v3v1Cv4 =⇒ #I/O(4, P) = 20.

Cache Optimization: SLP + LRU Cache

Metric #I/O(K,): the total number of I/O transfers between
memory andf cache of K-capacity.

We have three kinds of operations for cache:
▶ H(x): Cache Hit for an element x. #I/O = 0.

▶ R(x): Cache miss. Evict LRU to mem. and read x from mem. #I/O = 2.
▶ W(x): Cache miss. Evict LRU to mem. and write x to cache. #I/O = 1.

Example: Calculate #I/O(4, P) for the following example SLP P :

v1 ← A⊕B; ∗1 ∗2 ∗3 ∗4
R(A)−−−→
2

∗2 ∗3 ∗4A
R(B)−−−→

2
∗3 ∗4 AB

W(v1)−−−→
1

v2 ← ⊕(E,D,A);

∗4 ABv1

R(E)−−−−→
2

ABv1E
R(D)−−−→

2
Bv1ED

R(A)−−−→
2

v1EDA
W(v2)−−−→

1

v3 ← v1 ⊕ E;

EDAv2
R(v1)−−−→

2
DAv2v1

R(E)−−−→
2

Av2v1E
W(v3)−−−→

1

v4 ← v1 ⊕ C;

v2v1Ev3
H(v1)−−−→

0
v2Ev3v1

R(C)−−−→
2

Ev3v1C
W(v4)−−−→

1

return(v2, v3, v4);

v3v1Cv4 =⇒ #I/O(4, P) = 20.

Cache Optimization: SLP + LRU Cache

Metric #I/O(K,): the total number of I/O transfers between
memory andf cache of K-capacity.

We have three kinds of operations for cache:
▶ H(x): Cache Hit for an element x. #I/O = 0.

▶ R(x): Cache miss. Evict LRU to mem. and read x from mem. #I/O = 2.
▶ W(x): Cache miss. Evict LRU to mem. and write x to cache. #I/O = 1.

Example: Calculate #I/O(4, P) for the following example SLP P :

v1 ← A⊕B; ∗1 ∗2 ∗3 ∗4
R(A)−−−→
2

∗2 ∗3 ∗4A
R(B)−−−→

2
∗3 ∗4 AB

W(v1)−−−→
1

v2 ← ⊕(E,D,A); ∗4 ABv1

R(E)−−−−→
2

ABv1E
R(D)−−−→

2
Bv1ED

R(A)−−−→
2

v1EDA
W(v2)−−−→

1

v3 ← v1 ⊕ E;

EDAv2
R(v1)−−−→

2
DAv2v1

R(E)−−−→
2

Av2v1E
W(v3)−−−→

1

v4 ← v1 ⊕ C;

v2v1Ev3
H(v1)−−−→

0
v2Ev3v1

R(C)−−−→
2

Ev3v1C
W(v4)−−−→

1

return(v2, v3, v4);

v3v1Cv4 =⇒ #I/O(4, P) = 20.

Cache Optimization: SLP + LRU Cache

Metric #I/O(K,): the total number of I/O transfers between
memory andf cache of K-capacity.

We have three kinds of operations for cache:
▶ H(x): Cache Hit for an element x. #I/O = 0.

▶ R(x): Cache miss. Evict LRU to mem. and read x from mem. #I/O = 2.
▶ W(x): Cache miss. Evict LRU to mem. and write x to cache. #I/O = 1.

Example: Calculate #I/O(4, P) for the following example SLP P :

v1 ← A⊕B; ∗1 ∗2 ∗3 ∗4
R(A)−−−→
2

∗2 ∗3 ∗4A
R(B)−−−→

2
∗3 ∗4 AB

W(v1)−−−→
1

v2 ← ⊕(E,D,A); ∗4 ABv1
R(E)−−−−→

2
ABv1E

R(D)−−−→
2

Bv1ED
R(A)−−−→
2

v1EDA
W(v2)−−−→

1

v3 ← v1 ⊕ E; EDAv2
R(v1)−−−→

2
DAv2v1

R(E)−−−→
2

Av2v1E
W(v3)−−−→

1

v4 ← v1 ⊕ C; v2v1Ev3
H(v1)−−−→

0
v2Ev3v1

R(C)−−−→
2

Ev3v1C
W(v4)−−−→

1

return(v2, v3, v4); v3v1Cv4 =⇒ #I/O(4, P) = 20.

First approach: Register Assignment

Idea: Reducing the number of variables can relax the pressure of cache, and
thus may reduce #I/O.

We do Recycling variables by Register assignment.

#I/O

v1 ← A⊕B; [5]
v2 ← ⊕(E,D,A); [7]
v3 ← v1 ⊕ E; [5]
v4 ← v1 ⊕ C; [3]
return(v2, v3, v4);

Register
assignment

==========⇒

#I/O

v1 ← A⊕B; [5]
v2 ← ⊕(E,D,A); [7]
v3 ← v1 ⊕ E; [5]
v1 ← v1 ⊕ C; [2]
return(v2, v3, v1);

R(v1)−−−→
0

v2Ev3v1
R(C)−−−→

2
Ev3v1C

W(v4)−−−→
1

v3v1Cv4

⇓
R(v1)−−−→

0
v2Ev3v1

R(C)−−−→
2

Ev3v1C
W(v1)−−−→

0
Ev3Cv1

It works, but the effect is so limited.

First approach: Register Assignment

Idea: Reducing the number of variables can relax the pressure of cache, and
thus may reduce #I/O.

We do Recycling variables by Register assignment.

#I/O

v1 ← A⊕B; [5]
v2 ← ⊕(E,D,A); [7]
v3 ← v1 ⊕ E; [5]
v4 ← v1 ⊕ C; [3]
return(v2, v3, v4);

Register
assignment

==========⇒

#I/O

v1 ← A⊕B; [5]
v2 ← ⊕(E,D,A); [7]
v3 ← v1 ⊕ E; [5]
v1 ← v1 ⊕ C; [2]
return(v2, v3, v1);

R(v1)−−−→
0

v2Ev3v1
R(C)−−−→

2
Ev3v1C

W(v4)−−−→
1

v3v1Cv4

⇓
R(v1)−−−→

0
v2Ev3v1

R(C)−−−→
2

Ev3v1C
W(v1)−−−→

0
Ev3Cv1

It works, but the effect is so limited.

First approach: Register Assignment

Idea: Reducing the number of variables can relax the pressure of cache, and
thus may reduce #I/O.

We do Recycling variables by Register assignment.

#I/O

v1 ← A⊕B; [5]
v2 ← ⊕(E,D,A); [7]
v3 ← v1 ⊕ E; [5]
v4 ← v1 ⊕ C; [3]
return(v2, v3, v4);

Register
assignment

==========⇒

#I/O

v1 ← A⊕B; [5]
v2 ← ⊕(E,D,A); [7]
v3 ← v1 ⊕ E; [5]
v1 ← v1 ⊕ C; [2]
return(v2, v3, v1);

R(v1)−−−→
0

v2Ev3v1
R(C)−−−→

2
Ev3v1C

W(v4)−−−→
1

v3v1Cv4

⇓
R(v1)−−−→

0
v2Ev3v1

R(C)−−−→
2

Ev3v1C
W(v1)−−−→

0
Ev3Cv1

It works, but the effect is so limited.

Next Approach: Reordering Statements and Arguments
No side effects on SLPs; thus, we can reorder statements and arguments.

#I/O

v1 ← A⊕B; [5]
v2 ← ⊕(E,D,A); [7]
v3 ← v1 ⊕ E; [5]
v4 ← v1 ⊕ C; [3]
return(v2, v3, v4); 20

Reordering
======⇒

#I/O

v2 ← ⊕(A,D,E); [5]
v1 ← A⊕B; [3]
v3 ← v1 ⊕ E; [3]
v4 ← v1 ⊕ C; [3]
return(v2, v3, v4); 14

Using Pebble Game, we can integrate

{
Recycling Variables and

Reordering

⋆ R. Sethi, 1975, Complete register
allocation problems.

▶ We play the pebble game on
DAGs or abstract syntax graphs.

▶ We aim to put pebbles in return nodes. D E A B C

v2
v1

v3 v4

Next Approach: Reordering Statements and Arguments
No side effects on SLPs; thus, we can reorder statements and arguments.

#I/O

v1 ← A⊕B; [5]
v2 ← ⊕(E,D,A); [7]
v3 ← v1 ⊕ E; [5]
v4 ← v1 ⊕ C; [3]
return(v2, v3, v4); 20

Reordering
======⇒

#I/O

v2 ← ⊕(A,D,E); [5]
v1 ← A⊕B; [3]
v3 ← v1 ⊕ E; [3]
v4 ← v1 ⊕ C; [3]
return(v2, v3, v4); 14

Using Pebble Game, we can integrate

{
Recycling Variables and

Reordering

⋆ R. Sethi, 1975, Complete register
allocation problems.

▶ We play the pebble game on
DAGs or abstract syntax graphs.

▶ We aim to put pebbles in return nodes. D E A B C

v2
v1

v3 v4

Next Approach: Reordering Statements and Arguments
No side effects on SLPs; thus, we can reorder statements and arguments.

#I/O

v1 ← A⊕B; [5]
v2 ← ⊕(E,D,A); [7]
v3 ← v1 ⊕ E; [5]
v4 ← v1 ⊕ C; [3]
return(v2, v3, v4); 20

Reordering
======⇒

#I/O

v2 ← ⊕(A,D,E); [5]
v1 ← A⊕B; [3]
v3 ← v1 ⊕ E; [3]
v4 ← v1 ⊕ C; [3]
return(v2, v3, v4); 14

Using Pebble Game, we can integrate

{
Recycling Variables and

Reordering

⋆ R. Sethi, 1975, Complete register
allocation problems.

▶ We play the pebble game on
DAGs or abstract syntax graphs.

▶ We aim to put pebbles in return nodes. D E A B C

v2
v1

v3 v4

Pebble Game & Intractability of Optimization Problem

Playing Pebble Game = Deciding Evaluation Order+ Variable Recycling

D E A B C

v2
v1

v3 v4

#I/O

v2 : p1 ← ⊕(A,D,E); [7]
v1 : p2 ← A⊕B; [3]
v3 : p3 ← E ⊕ p2; [3]
v4 : p2 ← C ⊕ p2; [2]

return(p1, p3, p2); 15

Example: Evaluating strategy based on Depth-first-search

Pebble Game & Intractability of Optimization Problem

Playing Pebble Game = Deciding Evaluation Order+ Variable Recycling

D E A B C

v2
v1

v3 v4

#I/O

v2 :

p1 ← ⊕(A,D,E); [7]
v1 : p2 ← A⊕B; [3]
v3 : p3 ← E ⊕ p2; [3]
v4 : p2 ← C ⊕ p2; [2]

return(p1, p3, p2); 15

Example: Evaluating strategy based on Depth-first-search

1. Choose v2 from unvisited roots: alphabetical small v2 ≺ v3 ≺ v4.

2.

3.

4.

5.

6.

7. Finally, we compute v4 with moving/recycling pebble p2.

+

Pebble Game & Intractability of Optimization Problem

Playing Pebble Game = Deciding Evaluation Order+ Variable Recycling

D E A B C

v2
v1

v3 v4

#I/O

v2 :

p1

← ⊕(A,D,E);

[7]
v1 : p2 ← A⊕B; [3]
v3 : p3 ← E ⊕ p2; [3]
v4 : p2 ← C ⊕ p2; [2]

return(p1, p3, p2); 15

Example: Evaluating strategy based on Depth-first-search

1. Choose v2 from unvisited roots: alphabetical small v2 ≺ v3 ≺ v4.

2. Evaluate the children of v2 in alphabetical order.

3.

4.

5.

6.

7. Finally, we compute v4 with moving/recycling pebble p2.

+

Pebble Game & Intractability of Optimization Problem

Playing Pebble Game = Deciding Evaluation Order+ Variable Recycling

D E A B C

v2
v1

v3 v4

#I/O

v2 : p1 ← ⊕(A,D,E);

[7]
v1 : p2 ← A⊕B; [3]
v3 : p3 ← E ⊕ p2; [3]
v4 : p2 ← C ⊕ p2; [2]

return(p1, p3, p2); 15

Example: Evaluating strategy based on Depth-first-search

1. Choose v2 from unvisited roots: alphabetical small v2 ≺ v3 ≺ v4.

2. Evaluate the children of v2 in alphabetical order.

3. Put a pebble p1 on v2 to denote v2 is visited.

4.

5.

6.

7. Finally, we compute v4 with moving/recycling pebble p2.

+
p1

Pebble Game & Intractability of Optimization Problem

Playing Pebble Game = Deciding Evaluation Order+ Variable Recycling

D E A B C

v2
v1

v3 v4

#I/O

v2 : p1 ← ⊕(A,D,E);

[7]
v1 : p2 ← A⊕B; [3]

v3 :

p3

← E ⊕

p2; [3]
v4 : p2 ← C ⊕ p2; [2]

return(p1, p3, p2); 15

Example: Evaluating strategy based on Depth-first-search

1. Choose v2 from unvisited roots: alphabetical small v2 ≺ v3 ≺ v4.

2. Evaluate the children of v2 in alphabetical order.

3. Put a pebble p1 on v2 to denote v2 is visited.

4. Choose v3 from 2 unvisited roots, and first visit E.

5.

6.

7. Finally, we compute v4 with moving/recycling pebble p2.

p1

+

Pebble Game & Intractability of Optimization Problem

Playing Pebble Game = Deciding Evaluation Order+ Variable Recycling

D E A B C

v2
v1

v3 v4

#I/O

v2 : p1 ← ⊕(A,D,E);

[7]

v1 : p2 ← A⊕B;

[3]

v3 :

p3

← E ⊕

p2; [3]
v4 : p2 ← C ⊕ p2; [2]

return(p1, p3, p2); 15

Example: Evaluating strategy based on Depth-first-search

1. Choose v2 from unvisited roots: alphabetical small v2 ≺ v3 ≺ v4.

2. Evaluate the children of v2 in alphabetical order.

3. Put a pebble p1 on v2 to denote v2 is visited.

4. Choose v3 from 2 unvisited roots, and first visit E.

5. Visit the unvisited child v1 of v3, evaluate, and pebble p2

6.

7. Finally, we compute v4 with moving/recycling pebble p2.

p1 +
p2

Pebble Game & Intractability of Optimization Problem

Playing Pebble Game = Deciding Evaluation Order+ Variable Recycling

D E A B C

v2
v1

v3 v4

#I/O

v2 : p1 ← ⊕(A,D,E);

[7]

v1 : p2 ← A⊕B;

[3]

v3 : p3 ← E ⊕ p2;

[3]
v4 : p2 ← C ⊕ p2; [2]

return(p1, p3, p2); 15

Example: Evaluating strategy based on Depth-first-search

1. Choose v2 from unvisited roots: alphabetical small v2 ≺ v3 ≺ v4.

2. Evaluate the children of v2 in alphabetical order.

3. Put a pebble p1 on v2 to denote v2 is visited.

4. Choose v3 from 2 unvisited roots, and first visit E.

5. Visit the unvisited child v1 of v3, evaluate, and pebble p2
6. Back to v3 and pebble p3

7. Finally, we compute v4 with moving/recycling pebble p2.

p1 p2

+p3

Pebble Game & Intractability of Optimization Problem

Playing Pebble Game = Deciding Evaluation Order+ Variable Recycling

D E A B C

v2
v1

v3 v4

#I/O

v2 : p1 ← ⊕(A,D,E);

[7]

v1 : p2 ← A⊕B;

[3]

v3 : p3 ← E ⊕ p2;

[3]

v4 : p2 ← C ⊕ p2;

[2]
return(p1, p3, p2); 15

Example: Evaluating strategy based on Depth-first-search

1. Choose v2 from unvisited roots: alphabetical small v2 ≺ v3 ≺ v4.

2. Evaluate the children of v2 in alphabetical order.

3. Put a pebble p1 on v2 to denote v2 is visited.

4. Choose v3 from 2 unvisited roots, and first visit E.

5. Visit the unvisited child v1 of v3, evaluate, and pebble p2
6. Back to v3 and pebble p3
7. Finally, we compute v4 with moving/recycling pebble p2.

p1

p3 +
p2

Pebble Game & Intractability of Optimization Problem

Playing Pebble Game = Deciding Evaluation Order+ Variable Recycling

D E A B C

v2
v1

v3 v4
#I/O

v2 : p1 ← ⊕(A,D,E); [7]
v1 : p2 ← A⊕B; [3]
v3 : p3 ← E ⊕ p2; [3]
v4 : p2 ← C ⊕ p2; [2]

return(p1, p3, p2); 15

Example: Evaluating strategy based on Depth-first-search

Can we find the best reordering and pebbling in polynomial time?

Theorem (Sethi 1975, Papp & Wattenhofer 2020)

Unless P = NP, for a given P , in polynomial time,
we cannot find a Q that JP K = JQK and minimizes #I/O(Q).

We use DFS-based strategy as above in our evaluation.

p1

p3 p2

Evaluation

Data Set & Evaluation Environment

We consider RS(10, 4) as an example data set.

▶ We have 1-encoding SLP Penc.

▶ We have

(
14

4

)
= 1001 decoding SLPs.

We used two environments in my paper:

name CPU Clock Core RAM
intel i7-7567U 4.0GHz 2 DDR3-2133 16GB
amd Ryzen 2600 3.9GHz 6 DDR4-2666 48GB

In a distributed computation,
our test environments correspond to single nodes.

L1 cache specification:
Size Associativity Line Size

32KB/core 8-way 64 bytes

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000-runs for 10MB randomly generated data

Metric
Base

Penc

RePair RePair +

Fuse
RePair + Fuse +

Pebbling

#⊕ 755

385 N/A

#mem 2265

1155 677

B = 512 :
#I/O(K = 64) 1231 936 636

Throughput (GB/s) 4.18 6.98 7.24

B = 1K :
#I/O(K = 32) 1465 1086 779

Throughput (GB/s) 4.36 7.50 8.92

B = 2K :
#I/O(K = 16) 1599 1144 845

Throughput (GB/s) 4.86 7.12 8.55

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000-runs for 10MB randomly generated data

Metric
Base

Penc

RePair RePair +

Fuse
RePair + Fuse +

Pebbling

#⊕ 755

385 N/A

#mem 2265

1155 677

B = 512 :
#I/O(K = 64) 570

1231 936 636

Throughput (GB/s) 4.18 6.98 7.24

B = 1K :
#I/O(K = 32) 1262

1465 1086 779

Throughput (GB/s) 4.36 7.50 8.92

B = 2K :
#I/O(K = 16) 1598

1599 1144 845

Throughput (GB/s) 4.86 7.12 8.55

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000-runs for 10MB randomly generated data

Metric
Base

Penc

RePair RePair +

Fuse
RePair + Fuse +

Pebbling

#⊕ 755

385 N/A

#mem 2265

1155 677

B = 512 :
#I/O(K = 64) 570

1231 936 636

Throughput (GB/s) 4.18 6.98 7.24

B = 1K :
#I/O(K = 32) 1262

1465 1086 779

Throughput (GB/s) 4.36 7.50 8.92

B = 2K :
#I/O(K = 16) 1598

1599 1144 845

Throughput (GB/s) 4.86 7.12 8.55

B-Byte Blocking for Cache Efficiency

v1 = xor(A,B);

v2 = xor(v1, C,D);

return(v1, v2);

=⇒

for i← 0 .. (A.len /B) {
v
[i]
1 = xor(A[i], B[i]);

v
[i]
2 = xor(v

[i]
1 , C [i], D[i]);

}
return(v1, v2);

where A[i] is the i-th B-bytes block.

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000-runs for 10MB randomly generated data

Metric
Base

Penc

RePair RePair +

Fuse
RePair + Fuse +

Pebbling

#⊕ 755

385 N/A

#mem 2265

1155 677

B = 512 :
#I/O(K = 64) 570

1231 936 636

Throughput (GB/s) 3.10

4.18 6.98 7.24

B = 1K :
#I/O(K = 32) 1262

1465 1086 779

Throughput (GB/s) 4.03

4.36 7.50 8.92

B = 2K :
#I/O(K = 16) 1598

1599 1144 845

Throughput (GB/s) 4.45

4.86 7.12 8.55

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000-runs for 10MB randomly generated data

Metric
Base

Penc

RePair RePair +

Fuse
RePair + Fuse +

Pebbling

#⊕ 755

385 N/A

#mem 2265

1155 677

B = 512 :
#I/O(K = 64) 570

1231 936 636

Throughput (GB/s) 3.10

4.18 6.98 7.24

B = 1K :
#I/O(K = 32) 1262

1465 1086 779

Throughput (GB/s) 4.03

4.36 7.50 8.92

B = 2K :
#I/O(K = 16) 1598

1599 1144 845

Throughput (GB/s) 4.45

4.86 7.12 8.55

Why smaller blocks are slower
than the large one?

Pros: Smaller blocks,

▶ More cache-able blocks 32K
B .

Cons: Smaller blocks,

▶ Due to cache conflicts, using
cache identically is more
difficult.

▶ Latency penalty becomes
totally large.

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000-runs for 10MB randomly generated data

Metric
Base

Penc

RePair RePair +

Fuse
RePair + Fuse +

Pebbling

#⊕ 755 385

N/A

#mem 2265 1155

677

B = 512 :
#I/O(K = 64) 570

1231 936 636

Throughput (GB/s) 3.10

4.18 6.98 7.24

B = 1K :
#I/O(K = 32) 1262

1465 1086 779

Throughput (GB/s) 4.03

4.36 7.50 8.92

B = 2K :
#I/O(K = 16) 1598

1599 1144 845

Throughput (GB/s) 4.45

4.86 7.12 8.55

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000-runs for 10MB randomly generated data

Metric
Base

Penc

RePair RePair +

Fuse
RePair + Fuse +

Pebbling

#⊕ 755 385

N/A

#mem 2265 1155

677

B = 512 :
#I/O(K = 64) 570 1231

936 636

Throughput (GB/s) 3.10

4.18 6.98 7.24

B = 1K :
#I/O(K = 32) 1262 1465

1086 779

Throughput (GB/s) 4.03

4.36 7.50 8.92

B = 2K :
#I/O(K = 16) 1598 1599

1144 845

Throughput (GB/s) 4.45

4.86 7.12 8.55

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000-runs for 10MB randomly generated data

Metric
Base

Penc

RePair RePair +

Fuse
RePair + Fuse +

Pebbling

#⊕ 755 385

N/A

#mem 2265 1155

677

B = 512 :
#I/O(K = 64) 570 1231

936 636

Throughput (GB/s) 3.10 4.18

6.98 7.24

B = 1K :
#I/O(K = 32) 1262 1465

1086 779

Throughput (GB/s) 4.03 4.36

7.50 8.92

B = 2K :
#I/O(K = 16) 1598 1599

1144 845

Throughput (GB/s) 4.45 4.86

7.12 8.55

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000-runs for 10MB randomly generated data

Metric
Base

Penc

RePair RePair +

Fuse
RePair + Fuse +

Pebbling

#⊕ 755 385 N/A

#mem 2265 1155 677

B = 512 :
#I/O(K = 64) 570 1231

936 636

Throughput (GB/s) 3.10 4.18

6.98 7.24

B = 1K :
#I/O(K = 32) 1262 1465

1086 779

Throughput (GB/s) 4.03 4.36

7.50 8.92

B = 2K :
#I/O(K = 16) 1598 1599

1144 845

Throughput (GB/s) 4.45 4.86

7.12 8.55

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000-runs for 10MB randomly generated data

Metric
Base

Penc

RePair RePair +

Fuse
RePair + Fuse +

Pebbling

#⊕ 755 385 N/A

#mem 2265 1155 677

B = 512 :
#I/O(K = 64) 570 1231 936

636

Throughput (GB/s) 3.10 4.18

6.98 7.24

B = 1K :
#I/O(K = 32) 1262 1465 1086

779

Throughput (GB/s) 4.03 4.36

7.50 8.92

B = 2K :
#I/O(K = 16) 1598 1599 1144

845

Throughput (GB/s) 4.45 4.86

7.12 8.55

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000-runs for 10MB randomly generated data

Metric
Base

Penc

RePair RePair +

Fuse
RePair + Fuse +

Pebbling

#⊕ 755 385 N/A

#mem 2265 1155 677

B = 512 :
#I/O(K = 64) 570 1231 936

636

Throughput (GB/s) 3.10 4.18 6.98

7.24

B = 1K :
#I/O(K = 32) 1262 1465 1086

779

Throughput (GB/s) 4.03 4.36 7.50

8.92

B = 2K :
#I/O(K = 16) 1598 1599 1144

845

Throughput (GB/s) 4.45 4.86 7.12

8.55

Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000-runs for 10MB randomly generated data

Metric
Base

Penc

RePair RePair +

Fuse
RePair + Fuse +

Pebbling

#⊕ 755 385 N/A

#mem 2265 1155 677

B = 512 :
#I/O(K = 64) 570 1231 936 636

Throughput (GB/s) 3.10 4.18 6.98 7.24

B = 1K :
#I/O(K = 32) 1262 1465 1086 779

Throughput (GB/s) 4.03 4.36 7.50 8.92

B = 2K :
#I/O(K = 16) 1598 1599 1144 845

Throughput (GB/s) 4.45 4.86 7.12 8.55

Throughput Comparison (Intel + 1K-Blocking)

Enc #mem #I/O

RS(8, 4) 543 585
RS(9, 4) 611 671
RS(10, 4) 677 779

Ours ISA-L v2.30 Zhou & Tian
8.86 GB/s 7.18 GB/s 4.94 GB/s

8.83 6.91 N/A in their paper

8.92 6.79 4.94

Dec #mem #I/O

RS(8, 4) 747 811
RS(9, 4) 829 968
RS(10, 4) 923 1077

Ours ISA-L v2.30 Zhou & Tian
6.78 GB/s 7.04 GB/s 4.50 GB/s

6.71 6.58 N/A

6.67 4.88 4.71

RS10RS9RS8 RS8dec RS9dec RS10dec
0

2

4

6

8

10
Ours
ISAL

Zhou&Tian

Throughput Comparison (Intel + 1K-Blocking)

Enc #mem #I/O

RS(8, 4) 543 585
RS(9, 4) 611 671
RS(10, 4) 677 779

Ours ISA-L v2.30 Zhou & Tian
8.86 GB/s 7.18 GB/s 4.94 GB/s

8.83 6.91 N/A in their paper

8.92 6.79 4.94

Dec #mem #I/O

RS(8, 4) 747 811
RS(9, 4) 829 968
RS(10, 4) 923 1077

Ours ISA-L v2.30 Zhou & Tian
6.78 GB/s 7.04 GB/s 4.50 GB/s

6.71 6.58 N/A

6.67 4.88 4.71

RS10RS9RS8 RS8dec RS9dec RS10dec
0

2

4

6

8

10
Ours
ISAL

Zhou&Tian

Conclusion (+ Other Throughput Scores)
intel 1K
(GB/sec)

Ours ISA-L v 2.30 Zhou & Tian
Enc Dec Enc Dec Enc Dec

RS(8, 3) 12.32 8.82 9.09 9.25 6.08 5.57
RS(9, 3) 11.97 8.27 7.31 7.92 6.17 5.66
RS(10, 3) 11.78 8.89 6.78 7.93 6.15S 5.90

RS(8, 2) 18.79 14.59 12.99 13.34 8.13E 8.07E
RS(9, 2) 18.93 14.27 11.85 12.03 8.34E 8.04
RS(10, 2) 18.98 14.66 12.12 12.61 8.40E 8.22E

Conclusion

▶ We identified bitmatrix multiplication as straight line programs (SLP).

▶ We optimized XOR-based EC by optimizing SLPs using various program
optimization techniques.

▶ Each of our techniques is not difficult; however, it suffices to match
Intel’s high performance library ISAL.

▶ As future work on cache optimization, I plan to accommodate multi-layer
cache L1, L2, and L3 cache.

	What are Erasure Coding (EC) and XOR-Based EC
	Our Contribution: Optimizing Bitmatrix Multiplication as Program Optimization Problem
	Evaluation

