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“Accelerating Erasure Coding (EC)" means ...

Optimizing matrix multiplication over two finite fields:

(for Standard EC) A X B over F[QS],
(for XOR-based EC) C X D over F[Q}

> Byte Finite Field IF[2°] is a field with 256 elements.
> Bit Finite Field [F[2] = {0, 1} is a field with the two bits.
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* 1-byte (8-bits) data can be seen
as an element of [F[28].
» The definition is complex.
> Byte (We will see it in the later page).
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* 1-byte (8-bits) data can be seen
as an element of [F[28].
» The definition is complex.
> Byte (We will see it in the later page).

> Bit Fi  F[2] = {0,1} is a field of bits.
» Its addition is XOR &.
» Its multiplication is AND &.
» 0 and 1 satisfy the following:

r®0=00zr =2, y&kl=1&y=y.
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> Byte Finite Field IF[2°] is a field with 256 elements.

> Bit Finite Field [F[2] = {0, 1} is a field with the two bits.
Ais small. B is large. In this talk, as an example, we consider:

14

10 1M—-4M

A 10 B

XF[28]

This setting comes from €rasure coding.



What are Erasure Coding (EC) ana XOR-Based EC
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Example (Building a streaming media server with criteria)

1. We have 14 nodes. Each node has a 20TB disk.

2. We can load data even if nodes < 4 are down.
3. The total capacity of our server = 200TB.
» 1420 — 200 = 80TB can be used for data redundancy.
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Example (Building a streaming media server with criteria)

1. We have 14 nodes. Each node has a 20TB disk.

2. We can load data even if nodes < 4 are down.
3. The total capacity of our server = 200TB.
» 1420 — 200 = 80TB can be used for data redundancy.

For this criteria, we can employ Reed-Solomon EC RS(d = 10,p = 4).
» d: we can assume d-nodes are living. (d = 14 — p = 10).

» p: we can permit nodes < p go down. (p = 4).
N-bytes N N N

D ]t e [ - [fuls put[d] to node n:

N N N N-bytes
10 10

10
decod
collect 10 [d;|s [ fi| [fun] -+ [fo| == D
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N-bytes &y ol &y

lit 0 10 10
D |——[d][d] - [
10 -
dy
14 V X F[28] (4)
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» ): Vandermonde matrix



How encoding and decoding are implemented in RS(10,4) 7

N-bytes split 1% % 1%
D | —[d]|da] - [duo]
10 -
dq
14 V XF[28] (a)
d1o
ST 1 1
’fl‘ ’f2‘ ’flo‘ ’f14‘
» V. Vandermonde matrix kerase 4-fragments

N N N
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How encoding and decoding are implemented in RS(10,4) 7

. N N N
N-bytes Sp|lt

D [dr] [da] - [do]
10 J,l
vl

10 CZ; 14 V
d 10 10 10 10
0 ’fl‘ ’fQ"flO"fléL‘

» V: Vandermonde matrix kerase 4-fragments

—

d1o

» V. square submatrix of
N N N
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How encoding and decoding are implemented in RS(10,4) 7

N-bytes li 1% % 1%
D |25 [d] [da] - [do]
/_1 10 7
10 LW 14| ) | Xy |
d dio
oW« 4) IR i S
d 10 10 10 10
0 ’lefQ"flO"fM‘

» V: Vandermonde matrix kerase 4-fragments

» V. square submatrix of

» We have W1 since 10
Y is a Vandermonde matrix. fiu| [fia] = [ fino

N N
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How encoding and decoding are implemented in RS(10,4) 7

N
N-bytes Sp|lt 10 10

| D |[—>=a] Idal - | duo|

How large is IV in a real application?

e Lfi] [f2] oo [fio] o | fua]

» ). Vandermonde matrix lerase 4_fragments
» V. square submatrix of
N N N

» We have W1 since TR
Y is a Vandermonde matrix. fi| [fia] = [ fino
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Q. What is the heaviest operation on V Xpps) D 7
A. Multiplication of F[28]:

» Internally, p € F[28] is a 7-degree polynomial over F[2]:
brx” + bgz® + - - - + bz + by where b; € F[2].

» p1 + py of F[28] is the polynomial addition.
Easy because just componentwise XOR:

(br ® b7)x" + (b6 ® b)x® + - - + (bo ® bpy).
» On the other hand, p; - p2 of F[28] is CPU-heavy and slow:

1. We do the 7-degree polynomial multiplication p; X ps.
2. We take the modulo by a special polynomial (p; X p2) mod p.

XOR-based EC is one way to vanish - of F[28].
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XOR-based EC: From [F[2°] to BitMatrix (IF[2]-Matrix)

1

> 1-byte and 8-bits are isomorphic: z € F[2%] = 7 € 8|F[2]|

8

» There is an injective ring homomorphism B : F[2°] — 8| F[2] | l.e.,

z+y=B"(B(z) + B(y)),

v,y € F[2°]. { z-y =B Y(B(x) x B(y))

Prop: Emulate W™! x (W x D) = D in the F[2] world

F[2] Fl2] ~ I
B x (BW) x D)=BW™xW)xD=D.



XOR-based EC: From [F[2°] to BitMatrix (IF[2]-Matrix)

1

> 1-byte and 8-bits are isomorphic: z € F[2%] = 7 € 8|F[2]|

» There is an injective ring homomorphism B : F[2%] — 8| F[2]

Tl X9 » . dl _ Il.d1+l‘2.d2
fL’3 Ty ]F[Z] d2 x3.d1+x4.d4

U
1101 - 1 T1PLaD LD -
0011 - Zo T3 DXL D---
0110 - XIF[2] f?) — :[;2@1*3@...
1 00 1 - 7

Ty T1PTLP---

@ is byte-array XOR.
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Comparing MM over IF[2°] and MM over FF[2] for Encoding

Trade-off in

8
Matrix Multiplication S 2) By L2 | RS0 ) by 10

10 80
Number of Core Operation V : 14| F[28] B(V) : 112|F[2]

+ of F[2%] is fast bytevec-XOR &
- of F[2%] is slow | is fast (SIMDable)
Encoding Throughput Comparison (on Intel CPU):

Speed of Core Operation

GB/s | F[28] | State-of-the-art® F[2] | Ours(New!) F[2] |
RS(10, 4) 6.79 4.04 8.02
) 6.78 6.15 11.78
RS(9, 3) 7.31 6.17 11.97

: Intel’s EC library https://github.com/intel/isa-1

& T. Zhou & C. Tian. 2020. Fast Erasure Coding for Data Storage: A
Comprehensive Study of the Acceleration Techniques.
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Our Contribution:
Optimizing Bitmatrix Multiplication
as

Program Optimization Problem
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We identify bitmatrix multiplication as straight line program (SLP):

110 0 g»
1110 XF[Q] .
0111 <
U d
P(a,b,c,d)
v1 < a D b;
Ve —aDbDc
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return(vy, vg, v3)
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MM over F|2] = Running Straight Line Program

We identify bitmatrix multiplication as straight line program (SLP):

1100 ; agb
1 110 ) XF|z| = [detec
0111 I = bocad
P(a,b,c,d
(CL7 G ) [[P]] — return<”U1,7127’U3>
vl<—a@b; :<a@b
V3 a® b a®bdDe,
v3 b D cDd; e e@d)

return(vy, vg, v3)

% " Bitmatrix as SLP” is not a new idea (See. Boyar+ 2008)
» SLP only allow assignments with one kind binary operator .
» SLP do not have functions, if-branchings, and while-loop, etc.
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Question. For a given SLP P,
can we quickly find the most efficient equivalent SLP ()7



XOR Optimization: Reducing XORs

Optimization Metric #@(,): the number of XORs.

P #¢=38 Q #eo =41

v1 < a D b; v1 < a P b

Vg — aDbdc Vg — v1 P ¢

V3¢ aDbDcPd; — v3 < vy D d;

vy < b cPd, Vg < U3 D a;
(a®bDcDd) Da=bDcdd.

return(vy, va, U3, V4) return(vy, vg, U3, V4)

» P and () are equivalent: [P] = [Q].
» Intuitively, Q) (#(Q) = 4) runs faster than P (#4(P) = 8).

Theorem (Boyar+ 2013)

Unless P = NP, for a given SLP P, in polynomial time,
we cannot find () such that [P] = [Q] and minimizes #4(Q).
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» Paar. 1997. Optimized arithmetic for Reed-Solomon encoders
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Originally, REPAIR is an algorithm to compress context-free grammars.
We use it identifying SLPs as commutative CFGs.

» Larsson & Moffat. 1999. Offline dictionary-based compression

» Paar. 1997. Optimized arithmetic for Reed-Solomon encoders
REPAIR = Repeat PAIR. The key operation is PAIR:

v1  a D b < aPc
Vo — 1 DbD Par((L, C) V1 a Db
V3 1 DbBDchd; ———= vy 1 D Fo =17
Vg — bD chd; v3 11 DbBd;
#o =38 Vg — bD chd;
How do we choose a pair of terms to do pairing? Greedy.
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Our Heuristic: Grammar Compression Algorithm REPAIR

Originally, REPAIR is an algorithm to compress context-free grammars.
We use it identifying SLPs as commutative CFGs.

» Larsson & Moffat. 1999. Offline dictionary-based compression

» Paar. 1997. Optimized arithmetic for Reed-Solomon encoders
REPAIR = Repeat PAIR. The key operation is PAIR:

v < a Db, i1 <= adg
Vg — 1D b D c; Pam((L, C) v +— a Db
V3 1 DbBDchd; ———= vy 1 D Fo =17
n+—bdchd,; v3 11 DbBd;
t1 o ®b; t1 < a®b; eash
t2<—t1@c;
vy & t1 D PARR(t1,c) T2 < t1 D¢ PARGO), 4. —b@e
vt Sedd; v =& d e h®d
v bBedd; v bPedd; ER G

Vg t3 P d;



Our Heuristic: Grammar Compression Algorithm REPAIR

Originally, REPAIR is an algorithm to compress context-free grammars.
We use it identifying SLPs as commutative CFGs.

» Larsson & Moffat. 1999. Offline dictionary-based compression

» Paar. 1997. Optimized arithmetic for Reed-Solomon encoders
REPAIR = Repeat PAIR. The key operation is PAIR:

v < a P b; t1 < a®c

Vg — 1 DbD ¢ Pa((, C) v1 < a Db

V30 DbDcPDd;, ———= vy t1 Db #o =17

Ve~ bDcDd; v3 < t1 B bDd;
#@:8 U4%b@c@d;

The commutative version of REPAIR accommodates
Commutativity : T &P y=1y b X, Associativity : <$ hD y) Pz=xPD (y b Z).

In the paper, we extend it to XORREPAIR by accommodating
Cancellativity: = ®x dy = y.
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Memory Access Optimization: MultiSLP
Optimization Metric: #mem(-) = the number of memory access.

Quiz: How many times will this program access memory?

#mem( v— AP BaeCdD ): 9
because each @ issues two read and one write:
t1<—A@B; tQ(—tl@C; U(—tQ@D;

t1 and to are wasteful: they are released immediately after allocated.

To reduce such wastefulness,
we extend SLP to MultiSLP, which allows n-arity XORs.



Memory Access Optimization: MultiSLP

Optimization Metric: #mem(-) = the number of memory access.

Quiz: How many times will this program access memory?

#mem( v APBaoC®D ): 9

because each @ issues two read and one write:

t1<—A@B;

On MultiSLP, we can
V< EB4<A7B’Ca D)a
Thus, we have #mem = 5.

t2<—t1@0; U(—tQ@D;

®4(A, B, C, D: [bytel) {
var v = Array::new(A.len);
for ¢ in [0..A.len):
byte r = A[i] =~ BJi]

r=r " Cl;
v[i] = r = DJi];
return v;

}
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New Metric and Memory Optimization Problem

From a given P, can we quickly (= in polynomial time)
find an equivalent and most memory efficient Q) w.r.t. #mem ?

t < @4(a, b, c,d);
01— aDbBcDdDe vt De;
7 Vo~ aPbDcBd f; — @ v2 +—tD f;
#mem<P> =24 #mem(@) =11

Unfortunately, we showed the following intractability result:
Theorem (Our NEW theoretical result)

Unless P = NP, for a given SLP P, in polynomial time,
we cannot find Q) that [P] = [Q] and minimizes # mem(Q).




Our Heuristic: XOR Fusion
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Our Heuristic: XOR Fusion

We fuse XORs when the following holds:

— ®(z1,- -, Tn);
: fuse
’ :>5F@(y1,...,5['1,...
ﬁeGa(yl?"'? 7"'7ym)
% « appears once in the program
—a®b;
v CadbPcodde ?:t i;ﬂ el
se
V—adbPchdd® f; = 2 BN
4 (24) V1 — t3 P e;
mem vg < 13D f;

#mem (15)

y Ly - e 7ym)

tg <— @3((1,, b, C);

t3 < 1o P d;

v < 13D e;

Vg — t3 P f;
#mem(lg)



Our Heuristic: XOR Fusion

We fuse XORs when the following holds:

— ®(21,...,%0);
: fuse
' :>/8e@(ylv'"a‘Tl?"':“U’IM"'?ym
/8<—69(y17"'7 7"'7ym) )
% « appears once in the program
HCSBE g
NeadbOcddDe f%tl@d’. o) 13 ® d;
u
V—adbPchdd® f; SEAR, W 2 /= v 3D
V1 — t3 D e;
#mem(24) . UQEti’)@f;
Vg 3D f;
# (15) #mem(lg)
t3 — 694(017 b; C, d)7 mem
fuse(/2) v < 13 D e;
Ug<—t3@f;

#mem(ll)



Our Heuristic: XOR Fusion
We fuse XORs when the following holds:

— B(z1,. .., Tn);
: fuse
: — B+ BW1, - Tl Ty e Ym)
BBy s Ym)
% « appears once in the program
? :?G;bc, ty + @3(a,b,c);
neaDbScddde tQ%tl@d’, fuse(ts) t3 ¢ to @ d;
u
V—adbPchdd® f; AR, 53 2 ’ = v« t3De;
V1 — t3 D e;
#mem(24) . Vg <— t3@f7
Vg 3D f;
— @y(a,b, e, d); mem
v1  Ps(a, b, c,d, e);
fuse(tz) V1 < /5 D e; NOT fuse(/:) by ¥ o @ (a b.c.d f)
Vg @f, 2 5\, U, ¢, &, 9

Homem(11) #mem(12)
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Cache Optimization: SLP + LRU Cache

: ~ the total number of |/O transfers between
Metric #I/O(K’ 7>' memory andf cache of K-capacity.

We have three kinds of operations for cache:

» H(x): Cache Hit for an element z. #,0 = 0.
» R(z): Cache miss. Evict LRU to mem. and read x from mem. #,,0 = 2.
» W(z): Cache miss. Evict LRU to mem. and write x to cache. #,0 = 1.

Example: Calculate #,0(4, P) for the following example SLP P:
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Vg <— ®(E7D7A)7

Vg < U1 D E;

vy — v1 @ C

return(ve, v3, v4);



Cache Optimization: SLP + LRU Cache

: the total number of 1/O transfers between
St #l/O(K’ ) memory andf cache o/f K-capacity.
We have three kinds of operations for cache:
» H(x): Cache Hit for an element z. #,0 = 0.
» R(z): Cache miss. Evict LRU to mem. and read x from mem. #,,0 = 2.
» W(z): Cache miss. Evict LRU to mem. and write x to cache. #,0 = 1.

Example: Calculate #,0(4, P) for the following example SLP P:

«— Ao B; %1 ko *3 %y % %9 x3 x4 A @ x3 x4 AB W)

Vg < QB(EW,D,14)7 *4 AB’Ul
Vg < U1 D E;

vy — v1 @ C

return(ve, v3, v4);



Cache Optimization: SLP + LRU Cache

: the total number of 1/O transfers between
Metric #|/O(K, ,): of I/ .
memory andf cache of K-capacity.
We have three kinds of operations for cache:

» H(x): Cache Hit for an element z. #,0 = 0.
» R(z): Cache miss. Evict LRU to mem. and read x from mem. #,,0 = 2.
» W(z): Cache miss. Evict LRU to mem. and write x to cache. #,0 = 1.

Example: Calculate #,0(4, P) for the following example SLP P:

v — AP B; *1*2*3*4%*2*3*4,4@*3*4143@)
vy < @(E,D,A); x4 ABu; E(EEE—)ABQME @ BuED @ wEDA %
v3 < v B E; ED Auv, % D Avgv; @ Avy B 22,
vy < v1 @ C v9v1 Evg % Vo Evsvy @ Evzv,C Wlva),

return(vg,vg,v4); v3v1Cvy = #I/O(47 P) = 20.
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thus may reduce #/0.
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First approach: Register Assignment

Idea: Reducing the number of variables can relax the pressure of cache, and
thus may reduce #/0.

We do Recycling variables by Register assignment.

#1/0 . #1/0
v — A B; [5] Register v < AS B; [5]
vy — @(E, D, A); [71] assignment 4, (E D, A); [7]
v3 < 11 D E; [5] v3 < 11 D E; [5]
[3] 2]

+— v ®C; v1 < v1 ® C;
return(vy, v ; return(vy, v3, U1);
) U3, ) ) ) )



First approach: Register Assignment

Idea: Reducing the number of variables can relax the pressure of cache, and
thus may reduce #/0.

We do Recycling variables by Register assignment.

#1/0 . #1/0
v+ A® B; [5]  Register 4 « Ae B [5]
vy — @(E, D, A); [71] assignment 4, (E D, A); [7]
v3 < 11 D E; [5] v3 < 11 D E; [5]
+— v ®C; [] v+ v @ C []
return(vy, v3, ©1); return(vy, vz, U1);

ﬂ UgEUgUl Q) Ev V3V 10 Q) U31}10"04

I3
R(v1)

—_— UQEUgUl @ EvgvlC W(Ul)

EUgC’Ul

It works, but the effect is so limited.
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No side effects on SLPs; thus, we can reorder statements and arguments.

#1/0 #1/0
v <+ AP B; [5] ve  ®(A, D, E); 5]
Vg < EB(E, D, A), [7] Reordering V1 < A &) B, [3]
vz < v1 B E; [5] v < v1 B E; 3]
vy +— v @ C, B vy < v1 @ C; B

return(ve, v, vg); 20 return(ve, vs, vg); 14
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Next Approach: Reordering Statements and Arguments

No side effects on SLPs; thus, we can reorder statements and arguments.

#1/0 #1/0
v1 +— A B; [5] ve  ®(A, D, E); 5]
Vg <— EB(E, D, A), [7] Reordering V1 <— A® B, [3]
vz v @ E; [5] vz v ® E; 3]
vy v1 & C; B vy  v1 & C, B
return(ve, v, vg); 20 return(ve, vs, vg); 14

Using Pebble Game, we can integrate { Recycling Variables and

Reordering
* R. Sethi, 1975, Complete register @
allocation problems.
» We play the pebble game on U1
DAGs or abstract syntax graphs. AN
DFE ABC

» We aim to put pebbles in return nodes.
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1. Choose vy from unvisited roots: alphabetical small vy < v5 < v4.
2. Evaluate the children of vy in alphabetical order.
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Example: Evaluating strategy based on Depth-first-search
1. Choose vy from unvisited roots: alphabetical small vy < v5 < v4.
2. Evaluate the children of vy in alphabetical order.
3. Put a pebble p; on vy to denote v is visited.



Pebble Game & Intractability of Optimization Problem

Playing Pebble Game = Deciding Evaluation Order + Variable Recycling
(%A plk@(AaDaE%

V3 : +— Eo

Example: Evaluating strategy based on Depth-first-search

1. Choose vy from unvisited roots: alphabetical small vy < v5 < v4.
2. Evaluate the children of vy in alphabetical order.

3. Put a pebble p; on vy to denote v is visited.

4. Choose v3 from 2 unvisited roots, and first visit E.



Pebble Game & Intractability of Optimization Problem

Playing Pebble Game = Deciding Evaluation Order + Variable Recycling

@ @ ve: p1+ B(A, D, E);
@ _" vi: pr <+ AD B;
/ U © ! V3 : — E®
7 A
DE ABC
Example: Evaluating strategy based on Depth-first-search
1. Choose vy from unvisited roots: alphabetical small vy < v5 < v4.
Evaluate the children of vy in alphabetical order.
Put a pebble p; on vy to denote v5 is visited.
Choose v3 from 2 unvisited roots, and first visit £.
Visit the unvisited child v, of v3, evaluate, and pebble ps

O kWD



Pebble Game & Intractability of Optimization Problem

(U P1 — @(A7D7E>a
vy pa+— AP B;
v3: p3 < E D poy;

Example: Evaluating strategy based on Depth-first-search

1. Choose vy from unvisited roots: alphabetical small vy < v5 < v4.
Evaluate the children of vy in alphabetical order.
Put a pebble p; on vy to denote v5 is visited.
Choose v3 from 2 unvisited roots, and first visit £.
Visit the unvisited child v, of v3, evaluate, and pebble ps
Back to v3 and pebble p3

SURCGEF SN



Pebble Game & Intractability of Optimization Problem

Playing Pebble Game = Deciding Evaluation Order + Variable Recycling

(U p1 @(A7D7E>a
vy pa+— AP B;
v v3: p3 < E D poy;

vy p2 < C @ po;
D E A B C’

Example: Evaluating strategy based on Depth-first-search

1. Choose vy from unvisited roots: alphabetical small vy < v5 < v4.
Evaluate the children of vy in alphabetical order.
Put a pebble p; on vy to denote v5 is visited.
Choose v3 from 2 unvisited roots, and first visit £.
Visit the unvisited child v, of v3, evaluate, and pebble ps
Back to v3 and pebble p3

N o ok WD

Finally, we compute vy with moving/recycling pebble ps.



Pebble Game & Intractability of Optimization Problem

Playing Pebble Game = Deciding Evaluation Order + Variable 7ﬁecycling

va: p1< ®(A,D,E); [1
v1: p2— A DB; 3
vs: p3 e E® po: 3
vg:  po 4 C D pg; [2

return(py, p3, p2); 15

]
]
]
]

Example: Evaluatlng strategy based on Depth-first-search

Can we find the best reordering and pebbling in polynomial time?
Theorem (Sethi 1975, Papp & Wattenhofer 2020)

Unless P = NP, for a given P, in polynomial time,
we cannot find a () that [P] = [Q] and minimizes #,0(Q).

We use DFS-based strategy as above in our evaluation.






Data Set & Evaluation Environment

We consider RS(10, 4) as an example data set.
» We have 1-encoding SLP P,,,..

14
» We have (4) = 1001 decoding SLPs.

We used two environments in my paper:

name \ CPU Clock Core RAM

intel
amd

In a distributed computation,
our test environments correspond to single nodes.

P [ Associativity Li [
L1 cache specification: Size ssociativity Line Size

i7-7567U  4.0GHz 2  DDR3-2133 16GB
Ryzen 2600 3.9GHz 6  DDR4-2666 43GB

32KB/core 8-way 64 bytes
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Throughput is Avg. of 1000-runs for 10MB randomly generated data
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Throughput is Avg. of 1000-runs for 10MB randomly generated data
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Metric P : RePair Fuse Sl
#a 755 |
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,,,,,,,,,,,,,,,,,,,,,,,,,,,, T
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sy #i/0( ) |
|
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Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000-runs for 10MB randomly generated data

| Baen

B-Byte Blocking for Cache Efficiency

for i - 0 .. (A.len/B) {

v; = xor(A, B); ng] — Xor(Am, B[ﬂ);
. v = xor(vy,C, D); = Ug] _ xor(vgi], clil, plily;
B = return(vy, v2); }

return(vy, vg);

B= where Al is the i-th B-bytes block.

|
|
#ij0(K = 16) 1598 ‘
|
|
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Improvements by heuristics for the encoding SLP on Intel PC

Throughput is Avg. of 1000-runs for 10MB randomly generated data

|

Metric Base }

Penc |

#o 755 |

e 265 |
,,,,,,,,,,,,,,,,,,,,,,,,,,,, L
K =64 570 |

B 5l #1/0( ) |
Throughput (GB/s) 3.10 :

K =32 1262 |

B=ik.: 7ol ) l
Throughput (GB/s) 4.03 |

|

K =16 1598 !

PR #i/0( ) :
Throughput (GB/s) 4.45 ‘

RePair RePair + RePair + Fuse +

I DL

Why smaller blocks are slower
than the large one?

Pros: Smaller blocks,

» More cache-able blocks %.

Cons: Smaller blocks,
» Due to cache conflicts, using —

cache identically is more
difficult.

» Latency penalty becomes
totally large.
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Improvements by heuristics for the encoding SLP on Intel PC
Throughput is Avg. of 1000-runs for 10MB randomly generated data

: Base | : - -
Metric : RePair RePair + RePair + Fuse +
P | Fuse Pebbling
#o 755 | 385 N/A
#Hmem 2265 ' 1155 677
,,,,,,,,,,,,,,,,,,,,,,,,,,,, e
K =64 570 ! 1231 936 636
sy #i/0( ) |
Throughput (GB/s) 3.10 ‘ 4.18 6.98 7.24
B 1K : #|/O(K = 32) 1262 | 1465 1086 779
Throughput (GB/s) 4.03 | 4.36 7.50 8.92
|
K =16 1598 | 1599 1144 845
PR #1/0( ) |
Throughput (GB/s) 4.45 ‘ 4.86 7.12 8.55




Throughput Comparison (Intel + 1K-Blocking)

Enc Hmem | #1/0 Ours | ISA-L v2.30| Zhou & Tian
RS(S, 4) 543 585 || 8.86 GB/s | 7.18 GB/s 4.94 GB/s
RS(9,4) | 611 | 671 8.83 6.91 N/A in their paper
RS(lO7 4) 677 779 8.92 6.79 4.94
It Ours 10 | | | |
i ISAL 8¢
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Throughput Comparison (Intel + 1K-Blocking)

Enc Hmem | #1/0 Ours | ISA-L v2.30| Zhou & Tian
RS(8,4) | 543 | 585 | 8.86GB/s| 7.18 GB/s 4.94 GB/s
RS(9,4) | 611 | 671 8.83 6.91 N/A in their paper
RS(10,4) | 677 | 779 8.92 6.79 4.94

Dec Hmem | #1/0 Ours | ISA-L v2.30 | Zhou & Tian
RS(8,4) | 747 | 811 | 6.78 GB/s | 7.04GB/s 4.50 GB/s
RS(9,4) | 829 | 968 6.71 6.58 N/A
RS(10,4) | 923 | 1077 6.67 4.88 4.71

It Qurs 10 | | | | | |

nooISAL | 8| 1

1 Zhou&Tian| ¢l |
4, 4
i | i
o -l - | | - || .

RS8

RS9

RS10

RS8dec

RS9dec

RS10dec



Conclusion (+ Other Throughput Scores)

intel 1K Ours ISA-L v 2.30 | Zhou & Tian
(GB/sec) | Enc  Dec | Enc Dec |Enc  Dec
RS(8,3) |12.32 8.82 | 9.09 925 |6.08 5.57
RS(9,3) |11.97 827 | 731 7.92 [6.17 5.66
RS(10,3) |11.78 889 | 6.78 7.93 | 6.155 5.90
RS(8,2) |18.79 14.59|12.99 13.34|8.13z 8.07g
RS(9,2) |18.93 14.27[11.85 12.03|8.345 8.04
RS(10,2) |18.98 14.66 | 12.12 12.61 | 8.40p 8.22p

Conclusion

» We identified bitmatrix multiplication as straight line programs (SLP).
» We optimized XOR-based EC by optimizing SLPs using various program

optimization techniques.

» Each of our techniques is not difficult; however, it suffices to match

Intel's high performance library ISAL.

» As future work on cache optimization, | plan to accommodate multi-layer
cache L1, L2, and L3 cache.
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