Efficient Scaling of Dynamic Graph Neural
Networks

Venkatesan T. Chakaravarthy, Shivmaran S. Pandian, Saurabh
Raje, Yogish Sabharwal, Toyotaro Suzumura, Shashanka Ubaru

IBM Research

St.Lovis, |science
MO |& beyond.

Graph Neural Networks

Classical Learning Paradigms
* Entities treated independently. Embedding derived from own features
Entities x Features

Classical Models

e2

e3 Decision trees
ed SVM

Graph Neural Networks
* Inter-relationships represented as graph
* Social network - friendship feature

* Embedding derived from
* Own features
* Neighborhood features)
e Prior Work Tell me);ont.ér' friends

* Various models and applications
* Distributed, multi-GPU implementations e
* Packages: DGL, PyTorch Geometric, Aligraph -Assyrian proverb

I will tell who you are

Dynamic Graph Neural Networks

e Graphs that evolve over time.
* Discrete Time Dynamic Graphs (DTDG)

* Represented by taking snapshots at regular intervals

* Topology (edges) and vertex features vary.
e Examples:

* Social networks: Take snapshot each day

* Financial transaction networks: Transactions during each week
* Models and Applications. Combine:

* GNN for topological aspects

* Recurrent Neural Networks (RNN) for time-series aspects
e Scalability has not been studied

% nt ol

Snapshot 1 Snapshot 2 Snapshot 3 Snapshot 4

— /3

Our Work: Scaling Dynamic Graph Neural Networks

First study on scaling dynamic graph neural networks.
* Multi-node, multi-GPU implementation

Optimizations tailored to dynamic GNN, exploiting dynamic graph properties
1. GPU Memory Optimization
* Gradient checkpoint
2. CPU-GPU Snapshot Transfer
* An efficient graph difference based strategy
3. Distribution Strategy
* Baseline: Vertex-partitioning used in static GNN
* Snapshot partitioning: Scalable strategy

Experimental study
* Large real-life graphs with billion edges
* Scaling study up to 128 GPUs

Outline for rest of the talk

* Graph neural networks

* Dynamic graph neural networks
* Our work: Scaling dynamic GNN

Graph Convolution — Neighborhood Aggregation

Each vertex updates its features by aggregating features from neighbours

Laplacian
Example Mean hw
aggregation b (0) = Yuer@) hW) M (w) =
operations new deg(v) uer(v)\/d(u) - d(v)

Similar to convolution over images
« Each pixel updates by aggregating over neighboring pixels

Graph Convolution Layer

—

Aggregation

Input
Features
Hin
N x Fin

Sparse
matrix A
N x N

Aggregated

Features
N x Fin

Dense
Matrix
W
Fin x Fout

Output
Features

Hout
N x Fout

Graph Convolution Networks — Multiple Layers

* Single layer
* Assimilates information immediate neighbors
e K-layers
e Assimilates information from k-hop neighborhood
e Classical multi-layer perceptron
e Similar, but without aggregation
* More sophisticated GNN models have been proposed
e This framework is sufficient in our context

Input .
Embeddin
Features Layer 1 H2 Layer 2 H3 °
N';'(lFl Fully Fully N x F3
Connected Connected

Aggregate Aggregate Prediction

w1 W2

F1xF2 F2x F3

Dynamic Graph Neural Networks (DTDG): General Framework

GCN component Recurrent Neural Net (RNN) component
* Captures graph topological aspects * Captures time-series aspects

* Operates independently on each snapshot < Operates independently on each vertex

 —| | e —
— e T S — 4
il il

O 0
GCN GCN GCN GCN
1! < 1 I -
— |
— y 4

== RNN

Dynamic Graph Neural Networks (DTDG): General Framework

Input 1 1
Features H; H3
I I I
GCN GCN GCN
Layer 1 I I I
RNN
| | | ¥
H12 sz H% HZ Representative prior models
' : : : I
GCN GCN GCN GCN
Layer 2 l l l | TensorGCN M-product
I RNN —
J] | | WD-GCN LSTM
Output 3 3 3
. H H EvolveGCN LSTM over
Embedding 2 3 4 weights
Predictions Same framework
Prediction for future snapshots but differ in RNN model

Vertex/edge prediction for all snapshots

Scaling Dynamic GNN: GPU Memory

* Forward pass
* RNN processes snapshots from1to T
* Backpropagation of gradients
* Inthe reverse direction from Tto 1
* All snapshots and intermediate activations are stored in GPU
* Leads to GPU memory bottleneck

e

Optimization: Gradient Checkpoint

Gradient checkpoint

Popular technique in deep learning that reduces memory usage

Dynamic GNN

Divide timeline into blocks
First pass : Forward direction to collect checkpoint data
Second pass: Reverse direction, for each block

* Forwards pass using checkpoint data

* Backpropagation within the block

[chedpomcledion >

checkpoint data checkpoint data

Memory

Checkpoint data
Intra-block memory

Number of blocks

Hyperparameter that gives trade-off.

CPU-GPU Transfer

Gradient Checkpoint

e Store snapshots in CPU.

* Move block-by-block on demand basis

* Memory needed — in the order of single block size
Baseline Method

* Direct transfer of the snapshots

* Significant execution time overhead

U

CP

GPU

Optimization: Graph-difference Based CPU-GPU Transfer

Intuition

* Real-life graphs evolve slowly

* Consecutive snapshots are similar

* Smoothening by TensorGCN and EvolveGCN increases density and similarity
Strategy

* Do not transfer entire snapshot

* Transfer only the difference with respect to previous snapshot

* Reconstruct the snapshot in GPU

G1 G2

Difference
* Delete (2, 5)
* Insert (2, 4)

Transfer time: up to 4x reduction
Overall time: up to 40% reduction

Distribution Strategy: Baseline Vertex-Partitioning Approach

Vertex-Partitioning
* Used in static GNN partitioning
* Partition vertices equally among the processors
Communication
* RNN: Communication free.
* \Vertex features across timeline owned by same processor
* GCN
* Communication for all edges that cuts across processors
* Hypergraph partitioners used to find a good partition

| een | | Gen | GCN GCN ' .
L | I |
Proc
1
L RNN | e
Proc 4 . : -
2 °

Disadvantages

Communication volume increases
e Graph density
* Number of processors
Irregular communication pattern
e High implementation
overhead (on GPU)
Poor scaling
Expensive hyper-graph partitioning

Optimization: Snapshot-Partitioning Approach

Snapshot Partitioning

Partition snapshots among the processors

Communication
GCN is communication free

* Entire snapshot owned by a single processor
RNN needs communication

GCN

Processor 1

Processor 2

RNN

Snapshot-Partitioning: Redistribution

Re-distribution
1. First re-distribution
Redistribute output features of GCN via any equi-partitioning of vertices.
2. Complete RNN

3. Second re-distribution
Re-distribute output features of RNN to takes us back to snapshot partitioning
Communication volume

* 2 x Feature-size =2 x O(N x T x F). = O(Vertices x timesteps x feature-size)

Laplacian
matrices

Feature
matrices

GCN
output
features

Ay

A

X1

X3

1144

Y

Y,

Next Layer

Re-distribution

= o el = o el

Re-distribution

RNN

Zy

]
|l
]

Advantages
Comm volume independent of
* Edge density
* Number of processors
Regular communication pattern
* Low implementation
overhead (on GPU)
Scales better
No expensive partitioners

Experimental Evaluation

System Setup

* AiIMOS system (https://cci.rpi.edu/aimos).

* We use up to 16 nodes. Intel Xeon 6248.

* Each node has 8 Nvidia V100 GPUs. Total 128 GPUs. .

* NCCL (direct GPU-GPU communication) and PyTorch

Models

* TensorGCN, EvolveGCN, WD-GCN.

Smoothening

* Dataset graphs are highly sparse.

* TensorGCN and EvolveGCN smoothen the graphs that increases their density.

#tlmesteps #edges After smoothening
TensorGCN EvolveGCN
Input edges Input edges Experiments

epinions 755 K 13 M 653 M 1038 M * 3 models x 4 datasets
Representative sample
youtube 3.2M 203 12 M 851 M 802 M

AML-Sim 1M 200 124 M 1094 M 1038 M

https://cci.rpi.edu/aimos

Gradient Checkpoint: Summary

Baseline

Stores snapshots and intermediate activations for all snapshots in GPU
Could not execute on a single node with 8 GPUs due to insufficient GPU memory.

Gradient Checkpoint

Divides timeline into blocks
Stores only a single block of snapshots and intermediate activations in GPU.
Executed on a single GPU.

Graph-difference Based CPU-GPU Transfer

* Single GPU
Significant reduction in transfer time.
Up to 4x reduction in transfer time and 40% reduction in overall time.

* Large

4000
3500
3000
© 2500
vy
£ 2000
Q
£ 1500
|_
1000
500

system size

Overall execution time and transfer time scales.
Communication time becomes bottleneck due to inter-node communication

Single GPU: (TensorGCN, AML-Sim)

Baseline

Graph-diff

H Others

W Transfer

Tlme (msec)
=N

128 GPUs: (TensorGCN, AML-Sim)

m Others

B Transfer

Baseline Graph-diff

Vertex Partitioning vs Snapshot Partitioning

* Vertex partitioning
 Communication volume increases with number of processors
* Irregular communication pattern = High implementation overheads
* Poor scaling

* Snapshot partitioning
* Fixed communication volume for any number of processors
* Regular communication pattern = Low implementation overheads
e Better scaling

* TensorGCN, AML-Sim

Communication volume Execution time
(billion floats) per training epoch (msec)
Vertex Snapshot Vertex | Snapshot
Part. Part. Part. Part.
6668 3396
16 6.8 6.5 16 5254 1384

64 9.5 6.5 64 9164 593

Our Optimized Implementation : Strong Scaling

Computation + transfer (other) scales very well.

Communication
Up to 8 GPUs: on the same node and internal fast communication

16+ GPUs: Multi-node communication via slow interconnect
Overall

Single GPU = 8600 msec and 128 GPUs = 340 msec. Speedup = 25x

TIme (msec)

10000
9000
8000
7000
6000
5000
4000
3000
2000
100

=]

TensorGCN, AML-Sim: Strong Scaling

|II..I-
1 2 4 8 16 32 64

Processors (GPUs)

]
128

B Other

B Comm

Our Optimized Implementation : Weak Scaling

* AML-Sim simulator can generate graphs of different sizes
* Vary number of processors from 1 to 128

* Proportionately increase graph size

* Throughput = Graph size (edges) per second

GPUs Throughput GPUs Throughput
(intra-node) (intra-node)
Near-perfect weak scaling
1 1.0 16

24.7 * Drop in throughput from 8 (single
3.5 32 35.9 node) to 16 GPUs (two nodes).

Inter-node communication
10.1 64 66.2

co H N

22.8 128 125.7

Future Work

* Limitations of snapshot partitioning

* Large snapshots that do not fit a GPU

* Number of snapshots < number of processors

* Single snapshots need to be split among processors

* Hybrid scheme combining snapshot and vertex-partitioning
* Computation-communication overlap

 GCN and RNN across multiple layers
e Continuous Time Dynamic Graphs (CTDG)

» Represented by insertion/deletion of edges/vertices

Thark g

