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Graph Neural Networks 
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Classical Models

Deep neural nets
Decision trees

SVM

Classical Learning Paradigms
• Entities treated independently.  Embedding derived from own features

Graph Neural Networks
• Inter-relationships represented as graph

• Social network - friendship
• Embedding derived from  

• Own features 
• Neighborhood features

• Prior Work
• Various models and applications
• Distributed, multi-GPU implementations
• Packages: DGL, PyTorch Geometric, Aligraph

Entities x Features
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Tell me your friends 
and 

I will tell who you are 

-Assyrian proverb



Dynamic Graph Neural Networks

• Graphs that evolve over time.
• Discrete Time Dynamic Graphs (DTDG) 

• Represented by taking snapshots at regular intervals
• Topology (edges) and vertex features vary.

• Examples: 
• Social networks: Take snapshot each day
• Financial transaction networks: Transactions during each week

• Models and Applications. Combine:
• GNN for topological aspects
• Recurrent Neural Networks (RNN) for time-series aspects

• Scalability has not been studied
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Our Work: Scaling Dynamic Graph Neural Networks

First study on scaling dynamic graph neural networks.
• Multi-node, multi-GPU implementation

Optimizations tailored to dynamic GNN,  exploiting dynamic graph properties
1. GPU Memory Optimization

• Gradient checkpoint
2. CPU-GPU Snapshot Transfer

• An efficient graph difference based strategy
3. Distribution Strategy

• Baseline: Vertex-partitioning used in static GNN 
• Snapshot partitioning: Scalable strategy

Experimental study 
• Large real-life graphs with billion edges
• Scaling study up to 128 GPUs

Outline for rest of the talk
• Graph neural networks
• Dynamic graph neural networks
• Our work: Scaling dynamic GNN



Graph Convolution – Neighborhood Aggregation
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Each vertex updates its features  by aggregating features from neighbours

Similar to convolution over images

• Each pixel updates by aggregating over neighboring pixels

Example 
aggregation 
operations



Graph Convolution Layer

Aggregation
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Graph Convolution Networks – Multiple Layers

• Single layer 
• Assimilates information immediate neighbors

• K-layers 
• Assimilates information from k-hop neighborhood

• Classical multi-layer perceptron 
• Similar, but without aggregation

• More sophisticated GNN models have been proposed
• This framework is sufficient in our context



Dynamic Graph Neural Networks (DTDG): General Framework

Recurrent Neural Net (RNN) component
• Captures time-series aspects
• Operates independently on each vertex

GCN component
• Captures graph topological aspects
• Operates independently on each snapshot
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Dynamic Graph Neural Networks (DTDG): General Framework
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Input 
Features

Output 
Embedding

Predictions
• Prediction for future snapshots
• Vertex/edge prediction for all snapshots

Model RNN

TensorGCN M-product

WD-GCN LSTM

EvolveGCN LSTM over 
weights

Representative prior models

Same framework
but differ in RNN model



Scaling Dynamic GNN: GPU Memory

• Forward pass
• RNN processes snapshots from 1 to T

• Backpropagation of gradients 
• In the reverse direction from T to 1

• All snapshots and intermediate activations are stored in GPU
• Leads to GPU memory bottleneck 

Forward

Backpropagation

𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6



Optimization: Gradient Checkpoint 

Gradient checkpoint
• Popular technique in deep learning that reduces memory usage
Dynamic GNN
• Divide timeline into blocks
• First pass : Forward direction to collect checkpoint data
• Second pass: Reverse direction, for each block

• Forwards pass using checkpoint data 
• Backpropagation within the block 

𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6

Process in reverse direction

Forward Forward Forward

Backward BackwardBackward

Checkpoint collection

checkpoint datacheckpoint data

Memory
• Checkpoint data 
• Intra-block memory
Number of blocks
• Hyperparameter that gives trade-off.



CPU-GPU Transfer

Gradient Checkpoint
• Store snapshots in CPU.
• Move block-by-block on demand basis
• Memory needed – in the order of single block size

𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6

CPU

GPU

Baseline Method
• Direct transfer of the snapshots
• Significant execution time overhead 



Optimization: Graph-difference Based CPU-GPU Transfer

Intuition
• Real-life graphs evolve slowly
• Consecutive snapshots are similar
• Smoothening by TensorGCN and EvolveGCN increases density and similarity
Strategy
• Do not transfer entire snapshot
• Transfer only the difference with respect to previous snapshot
• Reconstruct the snapshot in GPU
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Difference
• Delete (2, 5) 
• Insert (2, 4)

Transfer time: up to 4x reduction
Overall time: up to 40% reduction



Distribution Strategy: Baseline Vertex-Partitioning Approach

Vertex-Partitioning
• Used in static GNN partitioning
• Partition vertices equally among the processors
Communication
• RNN: Communication free.  

• Vertex features across timeline owned by same processor
• GCN

• Communication for all edges that cuts across processors
• Hypergraph partitioners used to find a good partition

Disadvantages
• Communication volume increases 

• Graph density
• Number of processors

• Irregular communication pattern
• High implementation 

overhead (on GPU)
• Poor scaling
• Expensive hyper-graph partitioning



Optimization: Snapshot-Partitioning Approach

Snapshot Partitioning
• Partition snapshots among the processors
Communication
• GCN is communication free

• Entire snapshot owned by a single processor
• RNN needs communication
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Snapshot-Partitioning: Redistribution

Re-distribution
1. First re-distribution

• Redistribute output features of GCN via any equi-partitioning of vertices.
2. Complete RNN
3. Second re-distribution

• Re-distribute output features of RNN to takes us back to snapshot partitioning
Communication volume
• 2 x Feature-size = 2 x O(N x T x F). = O(Vertices x timesteps x feature-size)  

Advantages
• Comm volume independent of 

• Edge density
• Number of processors

• Regular communication pattern
• Low implementation 

overhead (on GPU)
• Scales better
• No expensive partitioners



Experimental Evaluation

System Setup
• AiMOS system (https://cci.rpi.edu/aimos). 
• We use up to 16 nodes. Intel Xeon 6248.
• Each node has 8 Nvidia V100 GPUs. Total 128 GPUs. .
• NCCL (direct GPU-GPU communication) and PyTorch
Models
• TensorGCN, EvolveGCN, WD-GCN. 
Smoothening
• Dataset graphs are highly sparse. 
• TensorGCN and EvolveGCN smoothen the graphs that increases their density.

#vertices 
N

#timesteps
T

#edges
m

After smoothening

TensorGCN
Input edges

EvolveGCN
Input edges

epinions 755 K 501 13 M 653 M 1038 M

flickr 2.3 M 134 33 M 963 M 796 M

youtube 3.2 M 203 12 M 851 M 802 M

AML-Sim 1 M 200 124 M 1094 M 1038 M

Experiments
• 3 models x 4 datasets
Representative sample
• TensorGCN, AML-Sim

https://cci.rpi.edu/aimos


Gradient Checkpoint: Summary

Baseline
• Stores snapshots and intermediate activations for all snapshots in GPU
• Could not execute on a single node with 8 GPUs due to insufficient GPU memory.

Gradient Checkpoint
• Divides timeline into blocks 
• Stores only a single block of snapshots and intermediate activations in GPU.
• Executed on a single GPU.



Graph-difference Based CPU-GPU Transfer

• Single GPU
• Significant reduction in transfer time. 
• Up to 4x reduction in transfer time and 40% reduction in overall time.

• Large system size
• Overall execution time and transfer time scales.
• Communication time becomes bottleneck due to inter-node communication



Vertex Partitioning vs Snapshot Partitioning 

• Vertex partitioning
• Communication volume increases with number of processors
• Irregular communication pattern → High implementation overheads
• Poor scaling

• Snapshot partitioning
• Fixed communication volume for any number of processors
• Regular communication pattern → Low implementation overheads
• Better scaling

• TensorGCN, AML-Sim

Proc. 
(GPUs)

Vertex
Part.

Snapshot 
Part.

4 3.2 6.5

16 6.8 6.5

64 9.5 6.5

Communication volume 
(billion floats)

Proc. 
(GPUs)

Vertex
Part.

Snapshot 
Part.

4 6668 3396

16 5254 1384

64 9164 593

Execution time 
per training epoch (msec)



Our Optimized Implementation : Strong Scaling

• Computation + transfer (other) scales very well.
• Communication

• Up to 8 GPUs: on the same node and internal fast communication
• 16+ GPUs: Multi-node communication via slow interconnect

• Overall
• Single GPU = 8600 msec and 128 GPUs = 340 msec. Speedup = 25x 



Our Optimized Implementation : Weak Scaling

• AML-Sim simulator can generate graphs of different sizes
• Vary number of processors from 1 to 128
• Proportionately increase graph size
• Throughput = Graph size (edges)  per second

GPUs 
(intra-node)

Throughput

1 1.0

2 3.5

4 10.1

8 22.8

GPUs 
(intra-node)

Throughput

16 24.7

32 35.9

64 66.2

128 125.7

• Near-perfect weak scaling
• Drop in throughput  from 8 (single 

node)  to 16 GPUs (two nodes). 
Inter-node communication



Future Work

• Limitations of snapshot partitioning
• Large snapshots that do not fit a GPU 
• Number of snapshots < number of processors
• Single snapshots need to be split among processors
• Hybrid scheme combining snapshot and vertex-partitioning

• Computation-communication overlap
• GCN and RNN across multiple layers

• Continuous Time Dynamic Graphs (CTDG)
• Represented by insertion/deletion of edges/vertices

Thank you


