

Efficient Scaling of Dynamic Graph Neural Networks

Venkatesan T. Chakaravarthy, Shivmaran S. Pandian, Saurabh Raje, Yogish Sabharwal, Toyotaro Suzumura, Shashanka Ubaru IBM Research

Graph Neural Networks

Classical Learning Paradigms

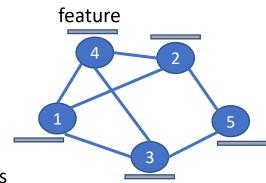
Entities treated independently. Embedding derived from own features

Entities x Features

	F1	F2	F3		Classical Models
e1					
e2					Deep neural nets
e3				,	Decision trees
e4					SVM

Graph Neural Networks

- Inter-relationships represented as graph
 - Social network friendship
- Embedding derived from
 - Own features
 - Neighborhood features
- Prior Work
 - Various models and applications
 - Distributed, multi-GPU implementations
 - Packages: DGL, PyTorch Geometric, Aligraph

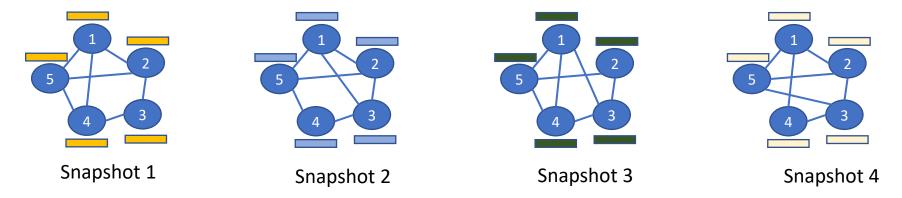


Tell me your friends and I will tell who you are

-Assyrian proverb

Dynamic Graph Neural Networks

- Graphs that evolve over time.
- Discrete Time Dynamic Graphs (DTDG)
 - Represented by taking snapshots at regular intervals
 - Topology (edges) and vertex features vary.
- Examples:
 - Social networks: Take snapshot each day
 - Financial transaction networks: Transactions during each week
- Models and Applications. Combine:
 - GNN for topological aspects
 - Recurrent Neural Networks (RNN) for time-series aspects
- Scalability has not been studied

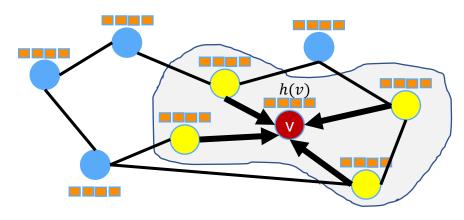


Our Work: Scaling Dynamic Graph Neural Networks

- First study on scaling dynamic graph neural networks.
 - Multi-node, multi-GPU implementation
- Optimizations tailored to dynamic GNN, exploiting dynamic graph properties
 - 1. GPU Memory Optimization
 - Gradient checkpoint
 - 2. CPU-GPU Snapshot TransferAn efficient graph difference based strategy
 - 3. Distribution Strategy
 - Baseline: Vertex-partitioning used in static GNN
 Snapshot partitioning: Scalable strategy
 - catal at at
 - Experimental study
 - Large real-life graphs with billion edges
 - Scaling study up to 128 GPUs
- Outline for rest of the talk
- Graph neural networks
- Dynamic graph neural networks
- Our work: Scaling dynamic GNN

Graph Convolution – Neighborhood Aggregation

Each vertex updates its features by aggregating features from neighbours



Example aggregation operations

Mean

$$h_{new}(v) = \frac{\sum_{u \in \Gamma(v)} h(u)}{\deg(v)}$$

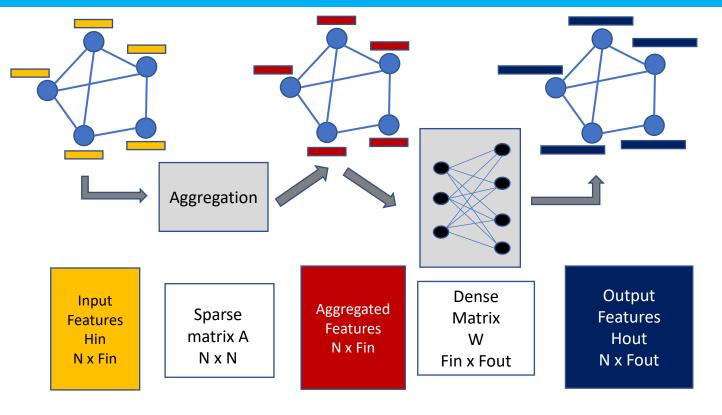
Laplacian

$$h_{new(v)} = \sum_{u \in \Gamma(v)} \frac{h(u)}{\sqrt{d(u) \cdot d(v)}}$$

Similar to convolution over images

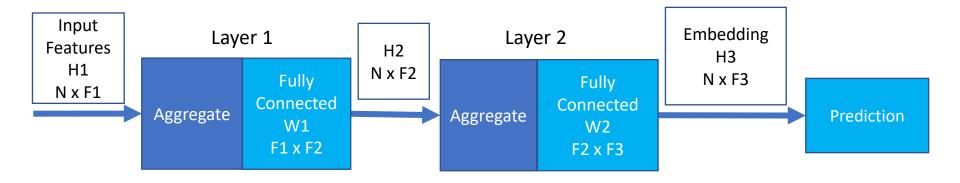
Each pixel updates by aggregating over neighboring pixels

Graph Convolution Layer



Graph Convolution Networks – Multiple Layers

- Single layer
 - Assimilates information immediate neighbors
- K-layers
 - Assimilates information from k-hop neighborhood
- Classical multi-layer perceptron
 - Similar, but without aggregation
- More sophisticated GNN models have been proposed
 - This framework is sufficient in our context



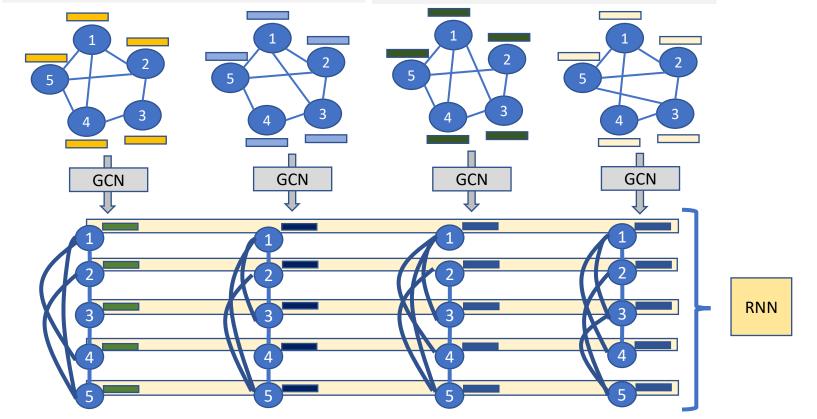
Dynamic Graph Neural Networks (DTDG): General Framework

GCN component

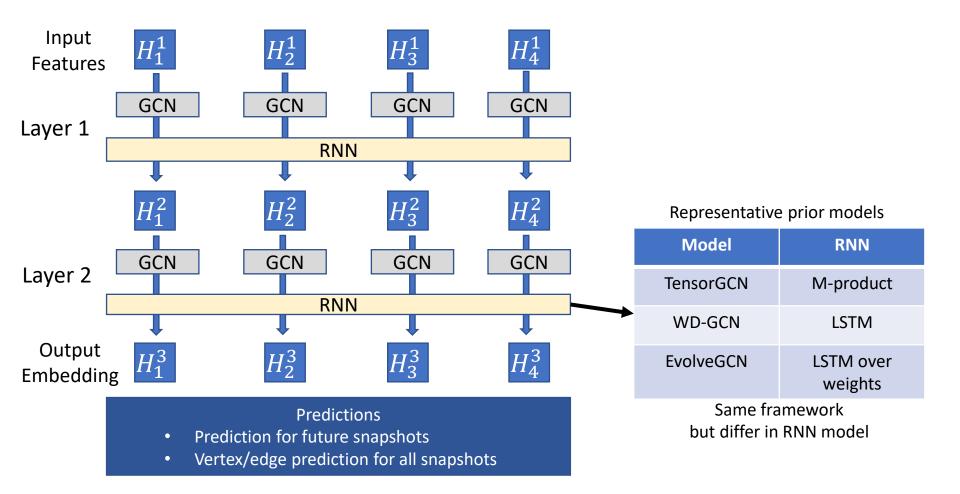
- Captures graph topological aspects
- Operates independently on each snapshot

Recurrent Neural Net (RNN) component

- Captures time-series aspects
- Operates independently on each vertex

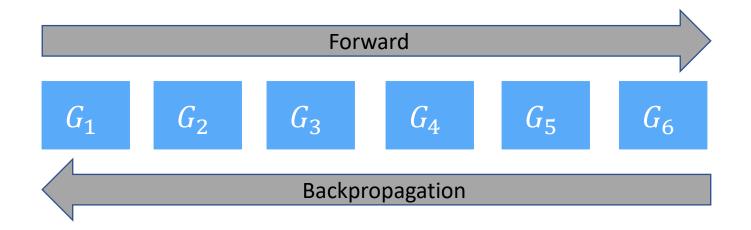


Dynamic Graph Neural Networks (DTDG): General Framework



Scaling Dynamic GNN: GPU Memory

- Forward pass
 - RNN processes snapshots from 1 to T
- Backpropagation of gradients
 - In the reverse direction from T to 1
- All snapshots and intermediate activations are stored in GPU
- Leads to GPU memory bottleneck



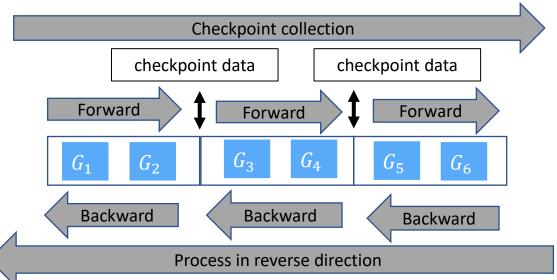
Optimization: Gradient Checkpoint

Gradient checkpoint

Popular technique in deep learning that reduces memory usage

Dynamic GNN

- Divide timeline into blocks
- First pass: Forward direction to collect checkpoint data
- Second pass: Reverse direction, for each block
 - Forwards pass using checkpoint data
 - Backpropagation within the block



Memory

- Checkpoint data
- Intra-block memory

Number of blocks

Hyperparameter that gives trade-off.

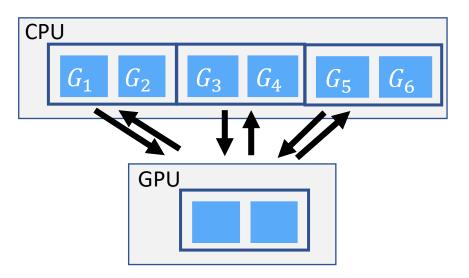
CPU-GPU Transfer

Gradient Checkpoint

- Store snapshots in CPU.
- Move block-by-block on demand basis
- Memory needed in the order of single block size

Baseline Method

- Direct transfer of the snapshots
- Significant execution time overhead



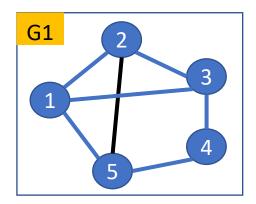
Optimization: Graph-difference Based CPU-GPU Transfer

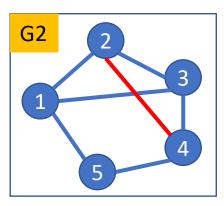
Intuition

- Real-life graphs evolve slowly
- Consecutive snapshots are similar
- Smoothening by TensorGCN and EvolveGCN increases density and similarity

Strategy

- Do not transfer entire snapshot
- Transfer only the difference with respect to previous snapshot
- Reconstruct the snapshot in GPU





Difference

- Delete (2, 5)
- Insert (2, 4)

Transfer time: up to 4x reduction Overall time: up to 40% reduction

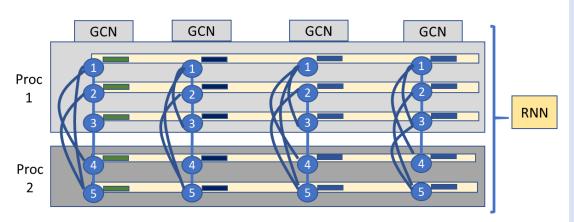
Distribution Strategy: Baseline Vertex-Partitioning Approach

Vertex-Partitioning

- Used in static GNN partitioning
- Partition vertices equally among the processors

Communication

- RNN: Communication free.
 - Vertex features across timeline owned by same processor
- GCN
 - Communication for all edges that cuts across processors
- Hypergraph partitioners used to find a good partition



Disadvantages

- Communication volume increases
 - Graph density
 - Number of processors
- Irregular communication pattern
 - High implementation overhead (on GPU)
- Poor scaling
- Expensive hyper-graph partitioning

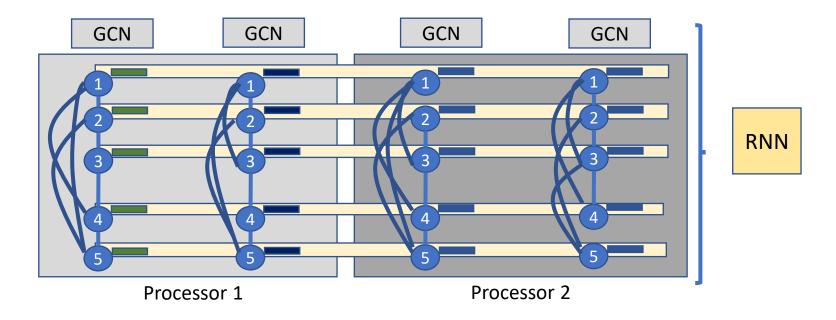
Optimization: Snapshot-Partitioning Approach

Snapshot Partitioning

Partition snapshots among the processors

Communication

- GCN is communication free
 - Entire snapshot owned by a single processor
- RNN needs communication



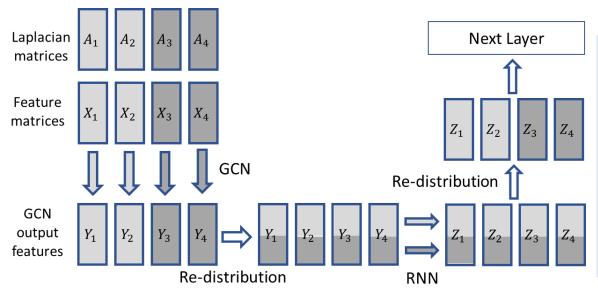
Snapshot-Partitioning: Redistribution

Re-distribution

- 1. First re-distribution
 - Redistribute output features of GCN via any equi-partitioning of vertices.
- 2. Complete RNN
- Second re-distribution
 - Re-distribute output features of RNN to takes us back to snapshot partitioning

Communication volume

• 2 x Feature-size = 2 x O(N x T x F). = O(Vertices x timesteps x feature-size)



Advantages

- Comm volume independent of
 - Edge density
 - Number of processors
 - Regular communication pattern
 - Low implementation overhead (on GPU)
- Scales better
- No expensive partitioners

Experimental Evaluation

System Setup

- AiMOS system (https://cci.rpi.edu/aimos).
- We use up to 16 nodes. Intel Xeon 6248.
- Each node has 8 Nvidia V100 GPUs. Total 128 GPUs. .
- NCCL (direct GPU-GPU communication) and PyTorch

Models

TensorGCN, EvolveGCN, WD-GCN.

Smoothening

- Dataset graphs are highly sparse.
- TensorGCN and EvolveGCN smoothen the graphs that increases their density.

	#vertices	#timesteps	#edges m	After smoothening	
	N	T		TensorGCN Input edges	EvolveGCN Input edges
epinions	755 K	501	13 M	653 M	1038 M
flickr	2.3 M	134	33 M	963 M	796 M
youtube	3.2 M	203	12 M	851 M	802 M
AML-Sim	1 M	200	124 M	1094 M	1038 M

Experiments

- 3 models x 4 datasets
 Representative sample
- Tanaar CON ANAL Sir
- TensorGCN, AML-Sim

Gradient Checkpoint: Summary

Baseline

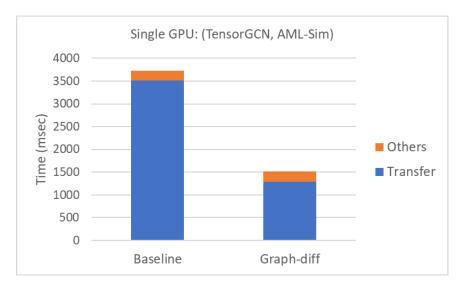
- Stores snapshots and intermediate activations for all snapshots in GPU
- Could not execute on a single node with 8 GPUs due to insufficient GPU memory.

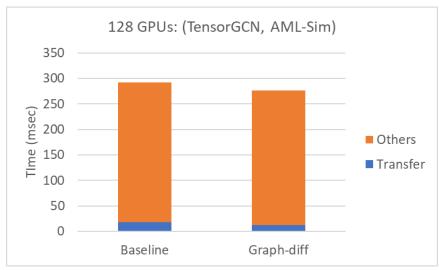
Gradient Checkpoint

- Divides timeline into blocks
- Stores only a single block of snapshots and intermediate activations in GPU.
- Executed on a single GPU.

Graph-difference Based CPU-GPU Transfer

- Single GPU
 - Significant reduction in transfer time.
 - Up to 4x reduction in transfer time and 40% reduction in overall time.
- Large system size
 - Overall execution time and transfer time scales.
 - Communication time becomes bottleneck due to inter-node communication





Vertex Partitioning vs Snapshot Partitioning

- Vertex partitioning
 - Communication volume increases with number of processors
 - Irregular communication pattern → High implementation overheads
 - Poor scaling
- Snapshot partitioning
 - Fixed communication volume for any number of processors
 - Regular communication pattern → Low implementation overheads
 - Better scaling
- TensorGCN, AML-Sim

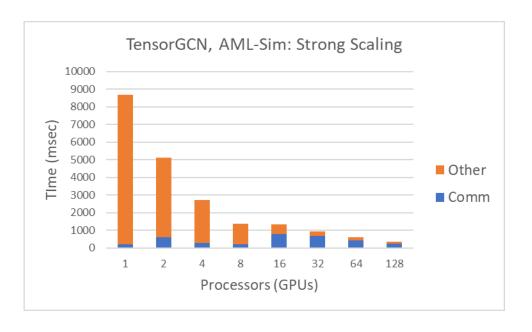
Communication volume (billion floats)

Execution time per training epoch (msec)

Proc. (GPUs)	Vertex Part.	Snapshot Part.	Proc. (GPUs)	Vertex Part.	Snapshot Part.
4	3.2	6.5	4	6668	3396
16	6.8	6.5	16	5254	1384
64	9.5	6.5	64	9164	593

Our Optimized Implementation: Strong Scaling

- Computation + transfer (other) scales very well.
- Communication
 - Up to 8 GPUs: on the same node and internal fast communication
 - 16+ GPUs: Multi-node communication via slow interconnect
- Overall
 - Single GPU = 8600 msec and 128 GPUs = 340 msec. Speedup = 25x



Our Optimized Implementation : Weak Scaling

- AML-Sim simulator can generate graphs of different sizes
- Vary number of processors from 1 to 128
- Proportionately increase graph size
- Throughput = Graph size (edges) per second

GPUs (intra-node)	Throughput
1	1.0
2	3.5
4	10.1
8	22.8

GPUs (intra-node)	Throughput
16	24.7
32	35.9
64	66.2
128	125.7

- Near-perfect weak scaling
- Drop in throughput from 8 (single node) to 16 GPUs (two nodes).
 Inter-node communication

Future Work

- Limitations of snapshot partitioning
 - Large snapshots that do not fit a GPU
 - Number of snapshots < number of processors
 - Single snapshots need to be split among processors
 - Hybrid scheme combining snapshot and vertex-partitioning
- Computation-communication overlap
 - GCN and RNN across multiple layers
- Continuous Time Dynamic Graphs (CTDG)
 - Represented by insertion/deletion of edges/vertices

Thank you