
Efficient Scaling of Dynamic Graph Neural
Networks
Venkatesan T. Chakaravarthy, Shivmaran S. Pandian, Saurabh
Raje, Yogish Sabharwal, Toyotaro Suzumura, Shashanka Ubaru

IBM Research

Graph Neural Networks

F1 F2 F3

e1

e2

e3

e4

Classical Models

Deep neural nets
Decision trees

SVM

Classical Learning Paradigms
• Entities treated independently. Embedding derived from own features

Graph Neural Networks
• Inter-relationships represented as graph

• Social network - friendship
• Embedding derived from

• Own features
• Neighborhood features

• Prior Work
• Various models and applications
• Distributed, multi-GPU implementations
• Packages: DGL, PyTorch Geometric, Aligraph

Entities x Features

1

2

3

5

4

feature

Tell me your friends
and

I will tell who you are

-Assyrian proverb

Dynamic Graph Neural Networks

• Graphs that evolve over time.
• Discrete Time Dynamic Graphs (DTDG)

• Represented by taking snapshots at regular intervals
• Topology (edges) and vertex features vary.

• Examples:
• Social networks: Take snapshot each day
• Financial transaction networks: Transactions during each week

• Models and Applications. Combine:
• GNN for topological aspects
• Recurrent Neural Networks (RNN) for time-series aspects

• Scalability has not been studied

1

5
2

4 3

1

5
2

4 3

1

5
2

4 3

1

5
2

4 3

Snapshot 1 Snapshot 2 Snapshot 3 Snapshot 4

Our Work: Scaling Dynamic Graph Neural Networks

First study on scaling dynamic graph neural networks.
• Multi-node, multi-GPU implementation

Optimizations tailored to dynamic GNN, exploiting dynamic graph properties
1. GPU Memory Optimization

• Gradient checkpoint
2. CPU-GPU Snapshot Transfer

• An efficient graph difference based strategy
3. Distribution Strategy

• Baseline: Vertex-partitioning used in static GNN
• Snapshot partitioning: Scalable strategy

Experimental study
• Large real-life graphs with billion edges
• Scaling study up to 128 GPUs

Outline for rest of the talk
• Graph neural networks
• Dynamic graph neural networks
• Our work: Scaling dynamic GNN

Graph Convolution – Neighborhood Aggregation

Mean

ℎ𝑛𝑒𝑤(𝑣) =
σ𝑢∈Γ(𝑣) ℎ(𝑢)

deg(𝑣)
ℎ𝑛𝑒𝑤 𝑣 =

𝑢∈Γ(𝑣)

ℎ(𝑢)

𝑑 𝑢 ⋅ 𝑑(𝑣)

Laplacian

v

ℎ(𝑣)

Each vertex updates its features by aggregating features from neighbours

Similar to convolution over images

• Each pixel updates by aggregating over neighboring pixels

Example
aggregation
operations

Graph Convolution Layer

Aggregation

Dense
Matrix

W
Fin x Fout

Input
Features

Hin
N x Fin

Aggregated
Features
N x Fin

Output
Features

Hout
N x Fout

Sparse
matrix A

N x N

H2
N x F2

Input
Features

H1
N x F1

Embedding
H3

N x F3

PredictionAggregate

Fully
Connected

W1
F1 x F2

Aggregate

Fully
Connected

W2
F2 x F3

Layer 1 Layer 2

Graph Convolution Networks – Multiple Layers

• Single layer
• Assimilates information immediate neighbors

• K-layers
• Assimilates information from k-hop neighborhood

• Classical multi-layer perceptron
• Similar, but without aggregation

• More sophisticated GNN models have been proposed
• This framework is sufficient in our context

Dynamic Graph Neural Networks (DTDG): General Framework

Recurrent Neural Net (RNN) component
• Captures time-series aspects
• Operates independently on each vertex

GCN component
• Captures graph topological aspects
• Operates independently on each snapshot

1

5
2

4 3

1

5
2

4 3

1

5
2

4 3

1

5
2

4 3

GCN GCN GCNGCN

1

2

3

4

5

1

2

3

4

5 5

1

2

3

4

RNN

5

1

2

3

4

Dynamic Graph Neural Networks (DTDG): General Framework

𝐻1
1 𝐻2

1 𝐻3
1 𝐻4

1

𝐻1
2 𝐻2

2 𝐻3
2 𝐻4

2

𝐻1
3 𝐻2

3 𝐻3
3 𝐻4

3

GCN GCN GCN GCN

RNN

GCN GCN GCN GCN

RNN

Layer 1

Layer 2

Input
Features

Output
Embedding

Predictions
• Prediction for future snapshots
• Vertex/edge prediction for all snapshots

Model RNN

TensorGCN M-product

WD-GCN LSTM

EvolveGCN LSTM over
weights

Representative prior models

Same framework
but differ in RNN model

Scaling Dynamic GNN: GPU Memory

• Forward pass
• RNN processes snapshots from 1 to T

• Backpropagation of gradients
• In the reverse direction from T to 1

• All snapshots and intermediate activations are stored in GPU
• Leads to GPU memory bottleneck

Forward

Backpropagation

𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6

Optimization: Gradient Checkpoint

Gradient checkpoint
• Popular technique in deep learning that reduces memory usage
Dynamic GNN
• Divide timeline into blocks
• First pass : Forward direction to collect checkpoint data
• Second pass: Reverse direction, for each block

• Forwards pass using checkpoint data
• Backpropagation within the block

𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6

Process in reverse direction

Forward Forward Forward

Backward BackwardBackward

Checkpoint collection

checkpoint datacheckpoint data

Memory
• Checkpoint data
• Intra-block memory
Number of blocks
• Hyperparameter that gives trade-off.

CPU-GPU Transfer

Gradient Checkpoint
• Store snapshots in CPU.
• Move block-by-block on demand basis
• Memory needed – in the order of single block size

𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6

CPU

GPU

Baseline Method
• Direct transfer of the snapshots
• Significant execution time overhead

Optimization: Graph-difference Based CPU-GPU Transfer

Intuition
• Real-life graphs evolve slowly
• Consecutive snapshots are similar
• Smoothening by TensorGCN and EvolveGCN increases density and similarity
Strategy
• Do not transfer entire snapshot
• Transfer only the difference with respect to previous snapshot
• Reconstruct the snapshot in GPU

2

1

5

3

4

G1 2

1

5

3

4

G2

Difference
• Delete (2, 5)
• Insert (2, 4)

Transfer time: up to 4x reduction
Overall time: up to 40% reduction

Distribution Strategy: Baseline Vertex-Partitioning Approach

Vertex-Partitioning
• Used in static GNN partitioning
• Partition vertices equally among the processors
Communication
• RNN: Communication free.

• Vertex features across timeline owned by same processor
• GCN

• Communication for all edges that cuts across processors
• Hypergraph partitioners used to find a good partition

Disadvantages
• Communication volume increases

• Graph density
• Number of processors

• Irregular communication pattern
• High implementation

overhead (on GPU)
• Poor scaling
• Expensive hyper-graph partitioning

Optimization: Snapshot-Partitioning Approach

Snapshot Partitioning
• Partition snapshots among the processors
Communication
• GCN is communication free

• Entire snapshot owned by a single processor
• RNN needs communication

1

2

3

4

5

1

2

3

4

5 5

1

2

3

4

5

1

2

3

4

Processor 1 Processor 2

GCN GCN GCN GCN

RNN

Snapshot-Partitioning: Redistribution

Re-distribution
1. First re-distribution

• Redistribute output features of GCN via any equi-partitioning of vertices.
2. Complete RNN
3. Second re-distribution

• Re-distribute output features of RNN to takes us back to snapshot partitioning
Communication volume
• 2 x Feature-size = 2 x O(N x T x F). = O(Vertices x timesteps x feature-size)

Advantages
• Comm volume independent of

• Edge density
• Number of processors

• Regular communication pattern
• Low implementation

overhead (on GPU)
• Scales better
• No expensive partitioners

Experimental Evaluation

System Setup
• AiMOS system (https://cci.rpi.edu/aimos).
• We use up to 16 nodes. Intel Xeon 6248.
• Each node has 8 Nvidia V100 GPUs. Total 128 GPUs. .
• NCCL (direct GPU-GPU communication) and PyTorch
Models
• TensorGCN, EvolveGCN, WD-GCN.
Smoothening
• Dataset graphs are highly sparse.
• TensorGCN and EvolveGCN smoothen the graphs that increases their density.

#vertices
N

#timesteps
T

#edges
m

After smoothening

TensorGCN
Input edges

EvolveGCN
Input edges

epinions 755 K 501 13 M 653 M 1038 M

flickr 2.3 M 134 33 M 963 M 796 M

youtube 3.2 M 203 12 M 851 M 802 M

AML-Sim 1 M 200 124 M 1094 M 1038 M

Experiments
• 3 models x 4 datasets
Representative sample
• TensorGCN, AML-Sim

https://cci.rpi.edu/aimos

Gradient Checkpoint: Summary

Baseline
• Stores snapshots and intermediate activations for all snapshots in GPU
• Could not execute on a single node with 8 GPUs due to insufficient GPU memory.

Gradient Checkpoint
• Divides timeline into blocks
• Stores only a single block of snapshots and intermediate activations in GPU.
• Executed on a single GPU.

Graph-difference Based CPU-GPU Transfer

• Single GPU
• Significant reduction in transfer time.
• Up to 4x reduction in transfer time and 40% reduction in overall time.

• Large system size
• Overall execution time and transfer time scales.
• Communication time becomes bottleneck due to inter-node communication

Vertex Partitioning vs Snapshot Partitioning

• Vertex partitioning
• Communication volume increases with number of processors
• Irregular communication pattern → High implementation overheads
• Poor scaling

• Snapshot partitioning
• Fixed communication volume for any number of processors
• Regular communication pattern → Low implementation overheads
• Better scaling

• TensorGCN, AML-Sim

Proc.
(GPUs)

Vertex
Part.

Snapshot
Part.

4 3.2 6.5

16 6.8 6.5

64 9.5 6.5

Communication volume
(billion floats)

Proc.
(GPUs)

Vertex
Part.

Snapshot
Part.

4 6668 3396

16 5254 1384

64 9164 593

Execution time
per training epoch (msec)

Our Optimized Implementation : Strong Scaling

• Computation + transfer (other) scales very well.
• Communication

• Up to 8 GPUs: on the same node and internal fast communication
• 16+ GPUs: Multi-node communication via slow interconnect

• Overall
• Single GPU = 8600 msec and 128 GPUs = 340 msec. Speedup = 25x

Our Optimized Implementation : Weak Scaling

• AML-Sim simulator can generate graphs of different sizes
• Vary number of processors from 1 to 128
• Proportionately increase graph size
• Throughput = Graph size (edges) per second

GPUs
(intra-node)

Throughput

1 1.0

2 3.5

4 10.1

8 22.8

GPUs
(intra-node)

Throughput

16 24.7

32 35.9

64 66.2

128 125.7

• Near-perfect weak scaling
• Drop in throughput from 8 (single

node) to 16 GPUs (two nodes).
Inter-node communication

Future Work

• Limitations of snapshot partitioning
• Large snapshots that do not fit a GPU
• Number of snapshots < number of processors
• Single snapshots need to be split among processors
• Hybrid scheme combining snapshot and vertex-partitioning

• Computation-communication overlap
• GCN and RNN across multiple layers

• Continuous Time Dynamic Graphs (CTDG)
• Represented by insertion/deletion of edges/vertices

Thank you

