SC21 Proceedings

The International Conference for High Performance Computing, Networking, Storage, and Analysis

DistGNN: Scalable Distributed Training for Large-Scale Graph Neural Networks


Authors: Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evangelos Georganas, Alexander Heinecke, Dhiraj Kalamkar, Nesreen K. Ahmed, and Sasikanth Avancha (Intel Corporation)

Abstract: Full-batch training on Graph Neural Networks (GNN) to learn the structure of large graphs is a critical problem that needs to scale to hundreds of compute nodes to be feasible. It is challenging due to large memory capacity and bandwidth requirements on a single compute node and high communication volumes across multiple nodes. In this paper, we present DistGNN that optimizes the well-known Deep Graph Library (DGL) for full-batch training on CPU clusters via an efficient shared memory implementation, communication reduction using a minimum vertex-cut graph partitioning algorithm and communication avoidance using a family of delayed-update algorithms. Our results on four common GNN benchmark datasets: Reddit, OGB-Products, OGB-Papers and Proteins, show up to 3.7× speed-up using a single CPU socket and up to 97× speed-up using 128 CPU sockets, respectively, over baseline DGL implementations running on a single CPU socket.




Back to Technical Papers Archive Listing